On Optimal Nonlinear Systematic Codes

Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-06, Vol.62 (6), p.3103-3112
Hauptverfasser: Guerrini, Eleonora, Meneghetti, Alessio, Sala, Massimiliano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Most bounds on the size of codes hold for any code, whether linear or not. Notably, the Griesmer bound holds only in the linear case and so optimal linear codes are not necessarily optimal codes. In this paper, we identify code parameters (q, d, k), namely, field size, minimum distance, and combinatorial dimension, for which the Griesmer bound also holds in the (systematic) nonlinear case. Moreover, we show that the Griesmer bound does not necessarily hold for a systematic code by explicit construction of a family of optimal systematic binary codes. On the other hand, we are able to provide some versions of the Griesmer bound holding for all the systematic codes.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2016.2553142