Semantically Secure Lattice Codes for the Gaussian Wiretap Channel

We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor, which characterizes the convergence of the conditional output distributions corresponding to different me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2014-10, Vol.60 (10), p.6399-6416
Hauptverfasser: Cong Ling, Luzzi, Laura, Belfiore, Jean-Claude, Stehle, Damien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a new scheme of wiretap lattice coding that achieves semantic security and strong secrecy over the Gaussian wiretap channel. The key tool in our security proof is the flatness factor, which characterizes the convergence of the conditional output distributions corresponding to different messages and leads to an upper bound on the information leakage. We not only introduce the notion of secrecy-good lattices, but also propose the flatness factor as a design criterion of such lattices. Both the modulo-lattice Gaussian channel and genuine Gaussian channel are considered. In the latter case, we propose a novel secrecy coding scheme based on the discrete Gaussian distribution over a lattice, which achieves the secrecy capacity to within a half nat under mild conditions. No a priori distribution of the message is assumed, and no dither is used in our proposed schemes.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2343226