Fast Sparse Superposition Codes Have Near Exponential Error Probability for $R

For the additive white Gaussian noise channel with average codeword power constraint, sparse superposition codes are developed. These codes are based on the statistical high-dimensional regression framework. In a previous paper, we investigated decoding using the optimal maximum-likelihood decoding...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2014-02, Vol.60 (2), p.919-942
Hauptverfasser: Joseph, Antony, Barron, Andrew R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the additive white Gaussian noise channel with average codeword power constraint, sparse superposition codes are developed. These codes are based on the statistical high-dimensional regression framework. In a previous paper, we investigated decoding using the optimal maximum-likelihood decoding scheme. Here, a fast decoding algorithm, called the adaptive successive decoder, is developed. For any rate R less than the capacity C, communication is shown to be reliable with nearly exponentially small error probability. Specifically, for blocklength n, it is shown that the error probability is exponentially small in n/logn.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2013.2289865