Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras
In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. F...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2011-09, Vol.57 (9), p.6148-6156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6156 |
---|---|
container_issue | 9 |
container_start_page | 6148 |
container_title | IEEE transactions on information theory |
container_volume | 57 |
creator | Unger, T. Markin, N. |
description | In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs. |
doi_str_mv | 10.1109/TIT.2011.2161909 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2011_2161909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6006635</ieee_id><sourcerecordid>2469306981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</originalsourceid><addsrcrecordid>eNpFkM9PwjAUxxujiYjeTbw0Jh6H7fpj7RGIIAmJMc5z7bo3MxwbtOOgf71FCJ7er-_3vbwPQreUjCgl-jFf5KOUUDpKqaSa6DM0oEJkiZaCn6MBIVQlmnN1ia5CWMWSC5oO0Mfrzpbe9rXDs86vA7Ztid821kGS12vAk6ZzX3jalRDwzHdrPIcWvG3qHyhx9Pbg27pr_2yTevvfGDefUHgbrtFFZZsAN8c4RO-zp3z6nCxf5ovpeJk4lpI-qaxWsqKcFIoCF1AIyhWpMqFYqcFpmboCFFMxl6koGAOhdGml3j-WMcmG6P6wd-O77Q5Cb1bdzrfxpFGaU51xRaOIHETOdyF4qMzG12vrvw0lZo_RRIxmj9EcMUbLw3GvDc42lbetq8PJl3IhItUs6u4OuhoATmNJiJRMsF8jKHol</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894197481</pqid></control><display><type>article</type><title>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</title><source>IEEE Electronic Library (IEL)</source><creator>Unger, T. ; Markin, N.</creator><creatorcontrib>Unger, T. ; Markin, N.</creatorcontrib><description>In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2161909</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Block codes ; Coding, codes ; Cost accounting ; Division algebras ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Matrices ; quadratic forms ; Quaternions ; Signal and communications theory ; space-time block codes ; Telecommunications and information theory ; Tensile stress ; Theorems</subject><ispartof>IEEE transactions on information theory, 2011-09, Vol.57 (9), p.6148-6156</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</citedby><cites>FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6006635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6006635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24554487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Unger, T.</creatorcontrib><creatorcontrib>Markin, N.</creatorcontrib><title>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Block codes</subject><subject>Coding, codes</subject><subject>Cost accounting</subject><subject>Division algebras</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Matrices</subject><subject>quadratic forms</subject><subject>Quaternions</subject><subject>Signal and communications theory</subject><subject>space-time block codes</subject><subject>Telecommunications and information theory</subject><subject>Tensile stress</subject><subject>Theorems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM9PwjAUxxujiYjeTbw0Jh6H7fpj7RGIIAmJMc5z7bo3MxwbtOOgf71FCJ7er-_3vbwPQreUjCgl-jFf5KOUUDpKqaSa6DM0oEJkiZaCn6MBIVQlmnN1ia5CWMWSC5oO0Mfrzpbe9rXDs86vA7Ztid821kGS12vAk6ZzX3jalRDwzHdrPIcWvG3qHyhx9Pbg27pr_2yTevvfGDefUHgbrtFFZZsAN8c4RO-zp3z6nCxf5ovpeJk4lpI-qaxWsqKcFIoCF1AIyhWpMqFYqcFpmboCFFMxl6koGAOhdGml3j-WMcmG6P6wd-O77Q5Cb1bdzrfxpFGaU51xRaOIHETOdyF4qMzG12vrvw0lZo_RRIxmj9EcMUbLw3GvDc42lbetq8PJl3IhItUs6u4OuhoATmNJiJRMsF8jKHol</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Unger, T.</creator><creator>Markin, N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</title><author>Unger, T. ; Markin, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Block codes</topic><topic>Coding, codes</topic><topic>Cost accounting</topic><topic>Division algebras</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Matrices</topic><topic>quadratic forms</topic><topic>Quaternions</topic><topic>Signal and communications theory</topic><topic>space-time block codes</topic><topic>Telecommunications and information theory</topic><topic>Tensile stress</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unger, T.</creatorcontrib><creatorcontrib>Markin, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unger, T.</au><au>Markin, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>57</volume><issue>9</issue><spage>6148</spage><epage>6156</epage><pages>6148-6156</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2161909</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2011-09, Vol.57 (9), p.6148-6156 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2011_2161909 |
source | IEEE Electronic Library (IEL) |
subjects | Algebra Applied sciences Block codes Coding, codes Cost accounting Division algebras Exact sciences and technology Information theory Information, signal and communications theory Matrices quadratic forms Quaternions Signal and communications theory space-time block codes Telecommunications and information theory Tensile stress Theorems |
title | Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Forms%20and%20Space-Time%20Block%20Codes%20From%20Generalized%20Quaternion%20and%20Biquaternion%20Algebras&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Unger,%20T.&rft.date=2011-09-01&rft.volume=57&rft.issue=9&rft.spage=6148&rft.epage=6156&rft.pages=6148-6156&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2161909&rft_dat=%3Cproquest_RIE%3E2469306981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=894197481&rft_id=info:pmid/&rft_ieee_id=6006635&rfr_iscdi=true |