Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras

In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2011-09, Vol.57 (9), p.6148-6156
Hauptverfasser: Unger, T., Markin, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6156
container_issue 9
container_start_page 6148
container_title IEEE transactions on information theory
container_volume 57
creator Unger, T.
Markin, N.
description In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.
doi_str_mv 10.1109/TIT.2011.2161909
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2011_2161909</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6006635</ieee_id><sourcerecordid>2469306981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</originalsourceid><addsrcrecordid>eNpFkM9PwjAUxxujiYjeTbw0Jh6H7fpj7RGIIAmJMc5z7bo3MxwbtOOgf71FCJ7er-_3vbwPQreUjCgl-jFf5KOUUDpKqaSa6DM0oEJkiZaCn6MBIVQlmnN1ia5CWMWSC5oO0Mfrzpbe9rXDs86vA7Ztid821kGS12vAk6ZzX3jalRDwzHdrPIcWvG3qHyhx9Pbg27pr_2yTevvfGDefUHgbrtFFZZsAN8c4RO-zp3z6nCxf5ovpeJk4lpI-qaxWsqKcFIoCF1AIyhWpMqFYqcFpmboCFFMxl6koGAOhdGml3j-WMcmG6P6wd-O77Q5Cb1bdzrfxpFGaU51xRaOIHETOdyF4qMzG12vrvw0lZo_RRIxmj9EcMUbLw3GvDc42lbetq8PJl3IhItUs6u4OuhoATmNJiJRMsF8jKHol</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>894197481</pqid></control><display><type>article</type><title>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</title><source>IEEE Electronic Library (IEL)</source><creator>Unger, T. ; Markin, N.</creator><creatorcontrib>Unger, T. ; Markin, N.</creatorcontrib><description>In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2011.2161909</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Algebra ; Applied sciences ; Block codes ; Coding, codes ; Cost accounting ; Division algebras ; Exact sciences and technology ; Information theory ; Information, signal and communications theory ; Matrices ; quadratic forms ; Quaternions ; Signal and communications theory ; space-time block codes ; Telecommunications and information theory ; Tensile stress ; Theorems</subject><ispartof>IEEE transactions on information theory, 2011-09, Vol.57 (9), p.6148-6156</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</citedby><cites>FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6006635$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6006635$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24554487$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Unger, T.</creatorcontrib><creatorcontrib>Markin, N.</creatorcontrib><title>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Block codes</subject><subject>Coding, codes</subject><subject>Cost accounting</subject><subject>Division algebras</subject><subject>Exact sciences and technology</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>Matrices</subject><subject>quadratic forms</subject><subject>Quaternions</subject><subject>Signal and communications theory</subject><subject>space-time block codes</subject><subject>Telecommunications and information theory</subject><subject>Tensile stress</subject><subject>Theorems</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkM9PwjAUxxujiYjeTbw0Jh6H7fpj7RGIIAmJMc5z7bo3MxwbtOOgf71FCJ7er-_3vbwPQreUjCgl-jFf5KOUUDpKqaSa6DM0oEJkiZaCn6MBIVQlmnN1ia5CWMWSC5oO0Mfrzpbe9rXDs86vA7Ztid821kGS12vAk6ZzX3jalRDwzHdrPIcWvG3qHyhx9Pbg27pr_2yTevvfGDefUHgbrtFFZZsAN8c4RO-zp3z6nCxf5ovpeJk4lpI-qaxWsqKcFIoCF1AIyhWpMqFYqcFpmboCFFMxl6koGAOhdGml3j-WMcmG6P6wd-O77Q5Cb1bdzrfxpFGaU51xRaOIHETOdyF4qMzG12vrvw0lZo_RRIxmj9EcMUbLw3GvDc42lbetq8PJl3IhItUs6u4OuhoATmNJiJRMsF8jKHol</recordid><startdate>20110901</startdate><enddate>20110901</enddate><creator>Unger, T.</creator><creator>Markin, N.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110901</creationdate><title>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</title><author>Unger, T. ; Markin, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c320t-fa986f140b81e45eb51480f7583d9ec962cbe8389ec625b33e589da6900187363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Block codes</topic><topic>Coding, codes</topic><topic>Cost accounting</topic><topic>Division algebras</topic><topic>Exact sciences and technology</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>Matrices</topic><topic>quadratic forms</topic><topic>Quaternions</topic><topic>Signal and communications theory</topic><topic>space-time block codes</topic><topic>Telecommunications and information theory</topic><topic>Tensile stress</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unger, T.</creatorcontrib><creatorcontrib>Markin, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Unger, T.</au><au>Markin, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2011-09-01</date><risdate>2011</risdate><volume>57</volume><issue>9</issue><spage>6148</spage><epage>6156</epage><pages>6148-6156</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2011.2161909</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2011-09, Vol.57 (9), p.6148-6156
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2011_2161909
source IEEE Electronic Library (IEL)
subjects Algebra
Applied sciences
Block codes
Coding, codes
Cost accounting
Division algebras
Exact sciences and technology
Information theory
Information, signal and communications theory
Matrices
quadratic forms
Quaternions
Signal and communications theory
space-time block codes
Telecommunications and information theory
Tensile stress
Theorems
title Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A31%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quadratic%20Forms%20and%20Space-Time%20Block%20Codes%20From%20Generalized%20Quaternion%20and%20Biquaternion%20Algebras&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Unger,%20T.&rft.date=2011-09-01&rft.volume=57&rft.issue=9&rft.spage=6148&rft.epage=6156&rft.pages=6148-6156&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2011.2161909&rft_dat=%3Cproquest_RIE%3E2469306981%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=894197481&rft_id=info:pmid/&rft_ieee_id=6006635&rfr_iscdi=true