Quadratic Forms and Space-Time Block Codes From Generalized Quaternion and Biquaternion Algebras

In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. F...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2011-09, Vol.57 (9), p.6148-6156
Hauptverfasser: Unger, T., Markin, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the context of space-time block codes (STBCs), the theory of generalized quaternion and biquaternion algebras (i.e., tensor products of two quaternion algebras) over arbitrary base fields is presented, as well as quadratic form theoretic criteria to check if such algebras are division algebras. For base fields relevant to STBCs, these criteria are exploited, via Springer's theorem, to construct several explicit infinite families of (bi-)quaternion division algebras. These are used to obtain new 2 × 2 and 4 × 4 STBCs.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2161909