Performance Analysis of ZF and MMSE Equalizers for MIMO Systems: An In-Depth Study of the High SNR Regime

This paper presents an in-depth analysis of the zero forcing (ZF) and minimum mean squared error (MMSE) equalizers applied to wireless multiinput multioutput (MIMO) systems with no fewer receive than transmit antennas. In spite of much prior work on this subject, we reveal several new and surprising...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2011-04, Vol.57 (4), p.2008-2026
Hauptverfasser: Yi Jiang, Varanasi, Mahesh K, Jian Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents an in-depth analysis of the zero forcing (ZF) and minimum mean squared error (MMSE) equalizers applied to wireless multiinput multioutput (MIMO) systems with no fewer receive than transmit antennas. In spite of much prior work on this subject, we reveal several new and surprising analytical results in terms of output signal-to-noise ratio (SNR), uncoded error and outage probabilities, diversity-multiplexing (D-M) gain tradeoff and coding gain. Contrary to the common perception that ZF and MMSE are asymptotically equivalent at high SNR, we show that the output SNR of the MMSE equalizer (conditioned on the channel realization) is ρ mmse = ρ zf +η \ssr snr , where ρ zf is the output SNR of the ZF equalizer and that the gap η \ssr snr is statistically independent of ρ zf and is a nondecreasing function of input SNR. Furthermore, as \ssr snr \ura ∞, η \ssr snr converges with probability one to a scaled F random variable. It is also shown that at the output of the MMSE equalizer, the interference-to-noise ratio (INR) is tightly upper bounded by [(η \ssr snr )/(ρ zf )]. Using the decomposition of the output SNR of MMSE, we can approximate its uncoded error, as well as outage probabilities through a numerical integral which accurately reflects the respective SNR gains of the MMSE equalizer relative to its ZF counterpart. The ε-outage capacities of the two equalizers, however, coincide in the asymptotically high SNR regime. We also provide the solution to a long-standing open problem: applying optimal detection ordering does not improve the D-M tradeoff of the vertical Bell Labs layered Space-Time (V-BLAST) architecture. It is shown that optimal ordering yields a SNR gain of 10log 10 N dB in the ZF-V-BLAST architecture (where N is the number of transmit antennas) whereas for the MMSE-V-BLAST architecture, the SNR gain due to ordered detection is even better and significantly so.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2011.2112070