Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle

Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-07, Vol.55 (7), p.3115-3147
Hauptverfasser: Ryan, O., Debbah, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3147
container_issue 7
container_start_page 3115
container_title IEEE transactions on information theory
container_volume 55
creator Ryan, O.
Debbah, M.
description Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.
doi_str_mv 10.1109/TIT.2009.2021317
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2009_2021317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075893</ieee_id><sourcerecordid>1753191381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVpoW7ae6AXUSilh001K41XOromaQIuheA0RyFrtVhhd-VK60D-fcbY-NDLjJ70vRHDY-wSxBWAMD_Wd-urWghDpQYJzRs2A8SmMnNUb9lMCNCVUUq_Zx9KeSKpEOoZu1-Ul2E3pSl6_jNs3XNMmaeO37uxTQP_Sy3kIVHlv92Uow-FP8Zpy69HUiTSyKdt4A9jnPgyZt-Hj-xd5_oSPp36BXu4uV4vb6vVn193y8Wq8krKqQptixrdZoONQY-ogqyN3rgOlJaAbaO6GvQG6ka2zjRemdZIDXQyVB3KC_b9OHfrervLcXD5xSYX7e1iZQ93QijRkOcZiP12ZHc5_duHMtkhFh_63o0h7YvVc6OVNmCI_PIf-ZT2eaRFLBg0UhnUBIkj5HMqJYfu_D8Ie4jDUhz2EIc9xUGWr6e5rnjXd9mNPpazj1at5wIVcZ-PXAwhnJ9RNKiNlK9P5pBR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195934958</pqid></control><display><type>article</type><title>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</title><source>IEEE Electronic Library (IEL)</source><creator>Ryan, O. ; Debbah, M.</creator><creatorcontrib>Ryan, O. ; Debbah, M.</creatorcontrib><description>Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2021317</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied sciences ; Array signal processing ; Asymptotic properties ; Biomedical signal processing ; Coding, codes ; Communications networks ; Computer Science ; Deconvolution ; Direction of arrival estimation ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Fast Fourier transforms ; Information theory ; Information, signal and communications theory ; limiting eigenvalue distribution ; Mathematical analysis ; Matrices ; Matrix ; Matrix methods ; Matrix theory ; Methods ; MIMO ; Miscellaneous ; multiple-input multiple-output (MIMO) ; Networking and Internet Architecture ; Radiocommunications ; random matrices ; Sampling ; Signal and communications theory ; Signal processing ; Signal sampling ; Sparse matrices ; Telecommunications ; Telecommunications and information theory ; Vandermonde matrices ; Veins ; Wireless communication ; Wireless communications</subject><ispartof>IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3115-3147</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</citedby><cites>FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5075893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21826054$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-00407938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, O.</creatorcontrib><creatorcontrib>Debbah, M.</creatorcontrib><title>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Asymptotic properties</subject><subject>Biomedical signal processing</subject><subject>Coding, codes</subject><subject>Communications networks</subject><subject>Computer Science</subject><subject>Deconvolution</subject><subject>Direction of arrival estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>limiting eigenvalue distribution</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Matrix theory</subject><subject>Methods</subject><subject>MIMO</subject><subject>Miscellaneous</subject><subject>multiple-input multiple-output (MIMO)</subject><subject>Networking and Internet Architecture</subject><subject>Radiocommunications</subject><subject>random matrices</subject><subject>Sampling</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal sampling</subject><subject>Sparse matrices</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Vandermonde matrices</subject><subject>Veins</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFrGzEQhUVpoW7ae6AXUSilh001K41XOromaQIuheA0RyFrtVhhd-VK60D-fcbY-NDLjJ70vRHDY-wSxBWAMD_Wd-urWghDpQYJzRs2A8SmMnNUb9lMCNCVUUq_Zx9KeSKpEOoZu1-Ul2E3pSl6_jNs3XNMmaeO37uxTQP_Sy3kIVHlv92Uow-FP8Zpy69HUiTSyKdt4A9jnPgyZt-Hj-xd5_oSPp36BXu4uV4vb6vVn193y8Wq8krKqQptixrdZoONQY-ogqyN3rgOlJaAbaO6GvQG6ka2zjRemdZIDXQyVB3KC_b9OHfrervLcXD5xSYX7e1iZQ93QijRkOcZiP12ZHc5_duHMtkhFh_63o0h7YvVc6OVNmCI_PIf-ZT2eaRFLBg0UhnUBIkj5HMqJYfu_D8Ie4jDUhz2EIc9xUGWr6e5rnjXd9mNPpazj1at5wIVcZ-PXAwhnJ9RNKiNlK9P5pBR</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Ryan, O.</creator><creator>Debbah, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090701</creationdate><title>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</title><author>Ryan, O. ; Debbah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Asymptotic properties</topic><topic>Biomedical signal processing</topic><topic>Coding, codes</topic><topic>Communications networks</topic><topic>Computer Science</topic><topic>Deconvolution</topic><topic>Direction of arrival estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>limiting eigenvalue distribution</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Matrix theory</topic><topic>Methods</topic><topic>MIMO</topic><topic>Miscellaneous</topic><topic>multiple-input multiple-output (MIMO)</topic><topic>Networking and Internet Architecture</topic><topic>Radiocommunications</topic><topic>random matrices</topic><topic>Sampling</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal sampling</topic><topic>Sparse matrices</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Vandermonde matrices</topic><topic>Veins</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, O.</creatorcontrib><creatorcontrib>Debbah, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryan, O.</au><au>Debbah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>55</volume><issue>7</issue><spage>3115</spage><epage>3147</epage><pages>3115-3147</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2021317</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3115-3147
issn 0018-9448
1557-9654
language eng
recordid cdi_crossref_primary_10_1109_TIT_2009_2021317
source IEEE Electronic Library (IEL)
subjects Antennas
Applied sciences
Array signal processing
Asymptotic properties
Biomedical signal processing
Coding, codes
Communications networks
Computer Science
Deconvolution
Direction of arrival estimation
Eigenvalues and eigenfunctions
Exact sciences and technology
Fast Fourier transforms
Information theory
Information, signal and communications theory
limiting eigenvalue distribution
Mathematical analysis
Matrices
Matrix
Matrix methods
Matrix theory
Methods
MIMO
Miscellaneous
multiple-input multiple-output (MIMO)
Networking and Internet Architecture
Radiocommunications
random matrices
Sampling
Signal and communications theory
Signal processing
Signal sampling
Sparse matrices
Telecommunications
Telecommunications and information theory
Vandermonde matrices
Veins
Wireless communication
Wireless communications
title Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Behavior%20of%20Random%20Vandermonde%20Matrices%20With%20Entries%20on%20the%20Unit%20Circle&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ryan,%20O.&rft.date=2009-07-01&rft.volume=55&rft.issue=7&rft.spage=3115&rft.epage=3147&rft.pages=3115-3147&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2021317&rft_dat=%3Cproquest_RIE%3E1753191381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195934958&rft_id=info:pmid/&rft_ieee_id=5075893&rfr_iscdi=true