Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle
Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2009-07, Vol.55 (7), p.3115-3147 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3147 |
---|---|
container_issue | 7 |
container_start_page | 3115 |
container_title | IEEE transactions on information theory |
container_volume | 55 |
creator | Ryan, O. Debbah, M. |
description | Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications. |
doi_str_mv | 10.1109/TIT.2009.2021317 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIT_2009_2021317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5075893</ieee_id><sourcerecordid>1753191381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</originalsourceid><addsrcrecordid>eNpdkUFrGzEQhUVpoW7ae6AXUSilh001K41XOromaQIuheA0RyFrtVhhd-VK60D-fcbY-NDLjJ70vRHDY-wSxBWAMD_Wd-urWghDpQYJzRs2A8SmMnNUb9lMCNCVUUq_Zx9KeSKpEOoZu1-Ul2E3pSl6_jNs3XNMmaeO37uxTQP_Sy3kIVHlv92Uow-FP8Zpy69HUiTSyKdt4A9jnPgyZt-Hj-xd5_oSPp36BXu4uV4vb6vVn193y8Wq8krKqQptixrdZoONQY-ogqyN3rgOlJaAbaO6GvQG6ka2zjRemdZIDXQyVB3KC_b9OHfrervLcXD5xSYX7e1iZQ93QijRkOcZiP12ZHc5_duHMtkhFh_63o0h7YvVc6OVNmCI_PIf-ZT2eaRFLBg0UhnUBIkj5HMqJYfu_D8Ie4jDUhz2EIc9xUGWr6e5rnjXd9mNPpazj1at5wIVcZ-PXAwhnJ9RNKiNlK9P5pBR</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195934958</pqid></control><display><type>article</type><title>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</title><source>IEEE Electronic Library (IEL)</source><creator>Ryan, O. ; Debbah, M.</creator><creatorcontrib>Ryan, O. ; Debbah, M.</creatorcontrib><description>Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2009.2021317</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Antennas ; Applied sciences ; Array signal processing ; Asymptotic properties ; Biomedical signal processing ; Coding, codes ; Communications networks ; Computer Science ; Deconvolution ; Direction of arrival estimation ; Eigenvalues and eigenfunctions ; Exact sciences and technology ; Fast Fourier transforms ; Information theory ; Information, signal and communications theory ; limiting eigenvalue distribution ; Mathematical analysis ; Matrices ; Matrix ; Matrix methods ; Matrix theory ; Methods ; MIMO ; Miscellaneous ; multiple-input multiple-output (MIMO) ; Networking and Internet Architecture ; Radiocommunications ; random matrices ; Sampling ; Signal and communications theory ; Signal processing ; Signal sampling ; Sparse matrices ; Telecommunications ; Telecommunications and information theory ; Vandermonde matrices ; Veins ; Wireless communication ; Wireless communications</subject><ispartof>IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3115-3147</ispartof><rights>2009 INIST-CNRS</rights><rights>Copyright Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2009</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</citedby><cites>FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5075893$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5075893$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21826054$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://centralesupelec.hal.science/hal-00407938$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ryan, O.</creatorcontrib><creatorcontrib>Debbah, M.</creatorcontrib><title>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.</description><subject>Antennas</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Asymptotic properties</subject><subject>Biomedical signal processing</subject><subject>Coding, codes</subject><subject>Communications networks</subject><subject>Computer Science</subject><subject>Deconvolution</subject><subject>Direction of arrival estimation</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Exact sciences and technology</subject><subject>Fast Fourier transforms</subject><subject>Information theory</subject><subject>Information, signal and communications theory</subject><subject>limiting eigenvalue distribution</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Matrix</subject><subject>Matrix methods</subject><subject>Matrix theory</subject><subject>Methods</subject><subject>MIMO</subject><subject>Miscellaneous</subject><subject>multiple-input multiple-output (MIMO)</subject><subject>Networking and Internet Architecture</subject><subject>Radiocommunications</subject><subject>random matrices</subject><subject>Sampling</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal sampling</subject><subject>Sparse matrices</subject><subject>Telecommunications</subject><subject>Telecommunications and information theory</subject><subject>Vandermonde matrices</subject><subject>Veins</subject><subject>Wireless communication</subject><subject>Wireless communications</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkUFrGzEQhUVpoW7ae6AXUSilh001K41XOromaQIuheA0RyFrtVhhd-VK60D-fcbY-NDLjJ70vRHDY-wSxBWAMD_Wd-urWghDpQYJzRs2A8SmMnNUb9lMCNCVUUq_Zx9KeSKpEOoZu1-Ul2E3pSl6_jNs3XNMmaeO37uxTQP_Sy3kIVHlv92Uow-FP8Zpy69HUiTSyKdt4A9jnPgyZt-Hj-xd5_oSPp36BXu4uV4vb6vVn193y8Wq8krKqQptixrdZoONQY-ogqyN3rgOlJaAbaO6GvQG6ka2zjRemdZIDXQyVB3KC_b9OHfrervLcXD5xSYX7e1iZQ93QijRkOcZiP12ZHc5_duHMtkhFh_63o0h7YvVc6OVNmCI_PIf-ZT2eaRFLBg0UhnUBIkj5HMqJYfu_D8Ie4jDUhz2EIc9xUGWr6e5rnjXd9mNPpazj1at5wIVcZ-PXAwhnJ9RNKiNlK9P5pBR</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Ryan, O.</creator><creator>Debbah, M.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090701</creationdate><title>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</title><author>Ryan, O. ; Debbah, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-edd585abb5795c554e3298baf148315d74f218b1273da97c49d938197c9819a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Antennas</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Asymptotic properties</topic><topic>Biomedical signal processing</topic><topic>Coding, codes</topic><topic>Communications networks</topic><topic>Computer Science</topic><topic>Deconvolution</topic><topic>Direction of arrival estimation</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Exact sciences and technology</topic><topic>Fast Fourier transforms</topic><topic>Information theory</topic><topic>Information, signal and communications theory</topic><topic>limiting eigenvalue distribution</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Matrix</topic><topic>Matrix methods</topic><topic>Matrix theory</topic><topic>Methods</topic><topic>MIMO</topic><topic>Miscellaneous</topic><topic>multiple-input multiple-output (MIMO)</topic><topic>Networking and Internet Architecture</topic><topic>Radiocommunications</topic><topic>random matrices</topic><topic>Sampling</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal sampling</topic><topic>Sparse matrices</topic><topic>Telecommunications</topic><topic>Telecommunications and information theory</topic><topic>Vandermonde matrices</topic><topic>Veins</topic><topic>Wireless communication</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, O.</creatorcontrib><creatorcontrib>Debbah, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ryan, O.</au><au>Debbah, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2009-07-01</date><risdate>2009</risdate><volume>55</volume><issue>7</issue><spage>3115</spage><epage>3147</epage><pages>3115-3147</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TIT.2009.2021317</doi><tpages>33</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2009-07, Vol.55 (7), p.3115-3147 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIT_2009_2021317 |
source | IEEE Electronic Library (IEL) |
subjects | Antennas Applied sciences Array signal processing Asymptotic properties Biomedical signal processing Coding, codes Communications networks Computer Science Deconvolution Direction of arrival estimation Eigenvalues and eigenfunctions Exact sciences and technology Fast Fourier transforms Information theory Information, signal and communications theory limiting eigenvalue distribution Mathematical analysis Matrices Matrix Matrix methods Matrix theory Methods MIMO Miscellaneous multiple-input multiple-output (MIMO) Networking and Internet Architecture Radiocommunications random matrices Sampling Signal and communications theory Signal processing Signal sampling Sparse matrices Telecommunications Telecommunications and information theory Vandermonde matrices Veins Wireless communication Wireless communications |
title | Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T17%3A43%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20Behavior%20of%20Random%20Vandermonde%20Matrices%20With%20Entries%20on%20the%20Unit%20Circle&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Ryan,%20O.&rft.date=2009-07-01&rft.volume=55&rft.issue=7&rft.spage=3115&rft.epage=3147&rft.pages=3115-3147&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2009.2021317&rft_dat=%3Cproquest_RIE%3E1753191381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195934958&rft_id=info:pmid/&rft_ieee_id=5075893&rfr_iscdi=true |