Asymptotic Behavior of Random Vandermonde Matrices With Entries on the Unit Circle

Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-07, Vol.55 (7), p.3115-3147
Hauptverfasser: Ryan, O., Debbah, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analytical methods for finding moments of random Vandermonde matrices with entries on the unit circle are developed. Vandermonde matrices play an important role in signal processing and wireless applications such as direction of arrival estimation, precoding, and sparse sampling theory, just to name a few. Within this framework, we extend classical freeness results on random matrices with independent and identically distributed (i.i.d.) entries and show that Vandermonde structured matrices can be treated in the same vein with different tools. We focus on various types of matrices, such as Vandermonde matrices with and without uniform phase distributions, as well as generalized Vandermonde matrices. In each case, we provide explicit expressions of the moments of the associated Gram matrix, as well as more advanced models involving the Vandermonde matrix. Comparisons with classical i.i.d. random matrix theory are provided, and deconvolution results are discussed. We review some applications of the results to the fields of signal processing and wireless communications.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2021317