Performance analysis of grammar-based codes revisited
The compression performance of grammar-based codes is revisited from a new perspective. Previously, the compression performance of grammar-based codes was evaluated against that of the best arithmetic coding algorithm with finite contexts. In this correspondence, we first define semifinite-state sou...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2004-07, Vol.50 (7), p.1524-1535 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The compression performance of grammar-based codes is revisited from a new perspective. Previously, the compression performance of grammar-based codes was evaluated against that of the best arithmetic coding algorithm with finite contexts. In this correspondence, we first define semifinite-state sources and finite-order semi-Markov sources. Based on the definitions of semifinite-state sources and finite-order semi-Markov sources, and the idea of run-length encoding (RLE), we then extend traditional RLE algorithms to context-based RLE algorithms: RLE algorithms with k contexts and RLE algorithms of order k, where k is a nonnegative integer. For each individual sequence x, let r/sup *//sub sr,k/(x) and r/sup *//sub sr|k/(x) be the best compression rate given by RLE algorithms with k contexts and by RLE algorithms of order k, respectively. It is proved that for any x, r/sup *//sub sr,k/ is no greater than the best compression rate among all arithmetic coding algorithms with k contexts. Furthermore, it is shown that there exist stationary, ergodic semi-Markov sources for which the best RLE algorithms without any context outperform the best arithmetic coding algorithms with any finite number of contexts. Finally, we show that the worst case redundancies of grammar-based codes against r/sup *//sub sr,k/(x) and r/sup *//sub sr|k/(x) among all length- n individual sequences x from a finite alphabet are upper-bounded by d/sub 1/loglogn/logn and d/sub 2/loglogn/logn, respectively, where d/sub 1/ and d/sub 2/ are constants. This redundancy result is stronger than all previous corresponding results. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2004.830781 |