Maximizing the spectral efficiency of coded CDMA under successive decoding
We investigate the spectral efficiency achievable by random synchronous code-division multiple access (CDMA) with quaternary phase-shift keying (QPSK) modulation and binary error-control codes, in the large system limit where the number of users, the spreading factor, and the code block length go to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2004-01, Vol.50 (1), p.152-164 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the spectral efficiency achievable by random synchronous code-division multiple access (CDMA) with quaternary phase-shift keying (QPSK) modulation and binary error-control codes, in the large system limit where the number of users, the spreading factor, and the code block length go to infinity. For given codes, we maximize spectral efficiency assuming a minimum mean-square error (MMSE) successive stripping decoder for the cases of equal rate and equal power users. In both cases, the maximization of spectral efficiency can be formulated as a linear program and admits a simple closed-form solution that can be readily interpreted in terms of power and rate control. We provide examples of the proposed optimization methods based on off-the-shelf low-density parity-check (LDPC) codes and we investigate by simulation the performance of practical systems with finite code block length. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2003.821970 |