Relationship between the Karhunen- Loéve transform and the Courant - Fischer theorem (Corresp.)
It is shown that the Karhunen-Loève transform problem can be formulated as a matrix approximation problem with Hilbert-Schmidt error norm. On the other hand, the Courant-Fischer minimax theorem provides a characterization for the best matrix approximation when the spectral norm is used. It appears t...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 1984-07, Vol.30 (4), p.662-664 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the Karhunen-Loève transform problem can be formulated as a matrix approximation problem with Hilbert-Schmidt error norm. On the other hand, the Courant-Fischer minimax theorem provides a characterization for the best matrix approximation when the spectral norm is used. It appears that the optimality conditions of the Karhunen-Loève problem lead to the selection of a particular solution among the set of solutions to the Courant-Fischer problem. |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.1984.1056938 |