Integrating GAN and Texture Synthesis for Enhanced Road Damage Detection

In the domain of traffic safety and road maintenance, precise detection of road damage is crucial for ensuring safe driving and prolonging road durability. However, current methods often fall short due to limited data. Prior attempts have used Generative Adversarial Networks to generate damage with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2024-09, Vol.25 (9), p.12361-12371
Hauptverfasser: Chen, Tengyang, Ren, Jiangtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the domain of traffic safety and road maintenance, precise detection of road damage is crucial for ensuring safe driving and prolonging road durability. However, current methods often fall short due to limited data. Prior attempts have used Generative Adversarial Networks to generate damage with diverse shapes and manually integrate it into appropriate positions. However, the problem has not been well explored and is faced with two challenges. First, they only enrich the location and shape of damage while neglect the diversity of severity levels, and the realism still needs further improvement. Second, they require a significant amount of manual effort. To address these challenges, we propose an innovative approach. In addition to using GAN to generate damage with various shapes, we further employ texture synthesis techniques to extract road textures. These two elements are then mixed with different weights, allowing us to control the severity of the synthesized damage, which are then embedded back into the original images via Poisson blending. Our method ensures both richness of damage severity and a better alignment with the background. To save labor costs, we leverage structural similarity for automated sample selection during embedding. Each augmented data of an original image contains versions with varying severity levels. We implement a straightforward screening strategy to mitigate distribution drift. Experiments are conducted on a public road damage dataset. The proposed method not only eliminates the need for manual labor but also achieves remarkable enhancements, improving the mAP by 4.1% and the F1-score by 4.5%.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2024.3373394