A Diversity Analysis of Safety Metrics Comparing Vehicle Performance in the Lead-Vehicle Interaction Regime

Vehicle performance metrics analyze data sets consisting of subject vehicle's interactions with other road users in a nominal driving environment and provide certain performance measures as outputs. To the best of the authors' knowledge, the vehicle safety performance metrics research date...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2023-11, Vol.24 (11), p.1-18
Hauptverfasser: Singh, Harnarayan, Weng, Bowen, Rao, Sughosh J., Elsasser, Devin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vehicle performance metrics analyze data sets consisting of subject vehicle's interactions with other road users in a nominal driving environment and provide certain performance measures as outputs. To the best of the authors' knowledge, the vehicle safety performance metrics research dates back to at least 1967. To date, there still does not exist a community-wide accepted metric or a set of metrics for vehicle safety performance assessment and justification. This issue gets further amplified with the evolving interest in Advanced Driver Assistance Systems and Automated Driving Systems. In this paper, the authors seek to perform a unified study that facilitates an improved community-wide understanding of vehicle performance metrics using the lead-vehicle interaction operational design domain as a common means of performance comparison. In particular, the authors study the diversity (including constructive formulation discrepancies and empirical performance differences) among 33 base metrics with up to 51 metric variants (with different choices of hyper-parameters) in the existing literature, published between 1967 and 2022. Two data sets are adopted for the empirical performance diversity analysis, including vehicle trajectories from normal highway driving environment and relatively high-risk incidents with collisions and near-miss cases. The analysis further implies that (i) the conceptual acceptance of a safety metric proposal can be problematic if the assumptions, conditions, and types of outcome assurance are not justified properly, and (ii) the empirical performance justification of an acceptable metric can also be problematic as a dominant consensus is not observed among metrics empirically.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2023.3290261