A Survey on Imitation Learning Techniques for End-to-End Autonomous Vehicles
The state-of-the-art decision and planning approaches for autonomous vehicles have moved away from manually designed systems, instead focusing on the utilisation of large-scale datasets of expert demonstration via Imitation Learning (IL). In this paper, we present a comprehensive review of IL approa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2022-09, Vol.23 (9), p.14128-14147 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The state-of-the-art decision and planning approaches for autonomous vehicles have moved away from manually designed systems, instead focusing on the utilisation of large-scale datasets of expert demonstration via Imitation Learning (IL). In this paper, we present a comprehensive review of IL approaches, primarily for the paradigm of end-to-end based systems in autonomous vehicles. We classify the literature into three distinct categories: 1) Behavioural Cloning (BC), 2) Direct Policy Learning (DPL) and 3) Inverse Reinforcement Learning (IRL). For each of these categories, the current state-of-the-art literature is comprehensively reviewed and summarised, with future directions of research identified to facilitate the development of imitation learning based systems for end-to-end autonomous vehicles. Due to the data-intensive nature of deep learning techniques, currently available datasets and simulators for end-to-end autonomous driving are also reviewed. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2022.3144867 |