GeoTrackNet-A Maritime Anomaly Detector Using Probabilistic Neural Network Representation of AIS Tracks and A Contrario Detection

Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach-referred to as GeoTrackNet -for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2022-06, Vol.23 (6), p.5655-5667
Hauptverfasser: Nguyen, Duong, Vadaine, Rodolphe, Hajduch, Guillaume, Garello, Rene, Fablet, Ronan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Representing maritime traffic patterns and detecting anomalies from them are key to vessel monitoring and maritime situational awareness. We propose a novel approach-referred to as GeoTrackNet -for maritime anomaly detection from AIS data streams. Our model exploits state-of-the-art neural network schemes to learn a probabilistic representation of AIS tracks and a contrario detection to detect abnormal events. The neural network provides a new means to capture complex and heterogeneous patterns in vessels' behaviours, while the a contrario detector takes into account the fact that the learnt distribution may be location-dependent. Experiments on a real AIS dataset comprising more than 4.2 million AIS messages demonstrate the relevance of the proposed method compared with state-of-the-art schemes.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2021.3055614