Segmentation of Vehicles and Roads by a Low-Channel Lidar
An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2019-11, Vol.20 (11), p.4251-4256 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4256 |
---|---|
container_issue | 11 |
container_start_page | 4251 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 20 |
creator | Lee, Jae-Seol Jo, Jun-Hyeong Park, Tae-Hyoung |
description | An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method. |
doi_str_mv | 10.1109/TITS.2019.2903529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2019_2903529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693545</ieee_id><sourcerecordid>2313660394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6s19mj1L8KAQEW70um2RqU9ps3U2R_nsTWjzNMDzvvPAwdoswQQT7sJgt5hMBaCfCgtTCnrERap1nAGjOh12ozIKGS3aV0rq_Ko04YnZO31tqO981oeVhyb9o1VQbSty3Nf8Ivk68PHDPi_CbTVe-bWnDi6b28ZpdLP0m0c1pjtnny_Ni-pYV76-z6VORVcLKLitzU1Le1-WGhPKGKmW8KAUCGSqteqxyVVMJSgsSEnpCKkVIwlpCqFGO2f3x7y6Gnz2lzq3DPrZ9pRMSpTEgreopPFJVDClFWrpdbLY-HhyCGwy5wZAbDLmToT5zd8w0RPTP58ZKrbT8AxfIX4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313660394</pqid></control><display><type>article</type><title>Segmentation of Vehicles and Roads by a Low-Channel Lidar</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Jae-Seol ; Jo, Jun-Hyeong ; Park, Tae-Hyoung</creator><creatorcontrib>Lee, Jae-Seol ; Jo, Jun-Hyeong ; Park, Tae-Hyoung</creatorcontrib><description>An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2903529</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D lidar ; Artificial neural networks ; Autonomous vehicle ; Autonomous vehicles ; Convolution ; convolution neural network ; Image segmentation ; Laser radar ; Lidar ; receptive field ; Roads ; Segmentation ; spherical coordinate ; Three-dimensional displays ; Two dimensional displays ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-11, Vol.20 (11), p.4251-4256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</citedby><cites>FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</cites><orcidid>0000-0002-8615-171X ; 0000-0002-3695-344X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Jae-Seol</creatorcontrib><creatorcontrib>Jo, Jun-Hyeong</creatorcontrib><creatorcontrib>Park, Tae-Hyoung</creatorcontrib><title>Segmentation of Vehicles and Roads by a Low-Channel Lidar</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.</description><subject>3D lidar</subject><subject>Artificial neural networks</subject><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Convolution</subject><subject>convolution neural network</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>receptive field</subject><subject>Roads</subject><subject>Segmentation</subject><subject>spherical coordinate</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6s19mj1L8KAQEW70um2RqU9ps3U2R_nsTWjzNMDzvvPAwdoswQQT7sJgt5hMBaCfCgtTCnrERap1nAGjOh12ozIKGS3aV0rq_Ko04YnZO31tqO981oeVhyb9o1VQbSty3Nf8Ivk68PHDPi_CbTVe-bWnDi6b28ZpdLP0m0c1pjtnny_Ni-pYV76-z6VORVcLKLitzU1Le1-WGhPKGKmW8KAUCGSqteqxyVVMJSgsSEnpCKkVIwlpCqFGO2f3x7y6Gnz2lzq3DPrZ9pRMSpTEgreopPFJVDClFWrpdbLY-HhyCGwy5wZAbDLmToT5zd8w0RPTP58ZKrbT8AxfIX4g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lee, Jae-Seol</creator><creator>Jo, Jun-Hyeong</creator><creator>Park, Tae-Hyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8615-171X</orcidid><orcidid>https://orcid.org/0000-0002-3695-344X</orcidid></search><sort><creationdate>20191101</creationdate><title>Segmentation of Vehicles and Roads by a Low-Channel Lidar</title><author>Lee, Jae-Seol ; Jo, Jun-Hyeong ; Park, Tae-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D lidar</topic><topic>Artificial neural networks</topic><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Convolution</topic><topic>convolution neural network</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>receptive field</topic><topic>Roads</topic><topic>Segmentation</topic><topic>spherical coordinate</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae-Seol</creatorcontrib><creatorcontrib>Jo, Jun-Hyeong</creatorcontrib><creatorcontrib>Park, Tae-Hyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Jae-Seol</au><au>Jo, Jun-Hyeong</au><au>Park, Tae-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Vehicles and Roads by a Low-Channel Lidar</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>20</volume><issue>11</issue><spage>4251</spage><epage>4256</epage><pages>4251-4256</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2903529</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8615-171X</orcidid><orcidid>https://orcid.org/0000-0002-3695-344X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2019-11, Vol.20 (11), p.4251-4256 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TITS_2019_2903529 |
source | IEEE Electronic Library (IEL) |
subjects | 3D lidar Artificial neural networks Autonomous vehicle Autonomous vehicles Convolution convolution neural network Image segmentation Laser radar Lidar receptive field Roads Segmentation spherical coordinate Three-dimensional displays Two dimensional displays Vehicles |
title | Segmentation of Vehicles and Roads by a Low-Channel Lidar |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Vehicles%20and%20Roads%20by%20a%20Low-Channel%20Lidar&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Lee,%20Jae-Seol&rft.date=2019-11-01&rft.volume=20&rft.issue=11&rft.spage=4251&rft.epage=4256&rft.pages=4251-4256&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2903529&rft_dat=%3Cproquest_RIE%3E2313660394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313660394&rft_id=info:pmid/&rft_ieee_id=8693545&rfr_iscdi=true |