Segmentation of Vehicles and Roads by a Low-Channel Lidar

An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2019-11, Vol.20 (11), p.4251-4256
Hauptverfasser: Lee, Jae-Seol, Jo, Jun-Hyeong, Park, Tae-Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4256
container_issue 11
container_start_page 4251
container_title IEEE transactions on intelligent transportation systems
container_volume 20
creator Lee, Jae-Seol
Jo, Jun-Hyeong
Park, Tae-Hyoung
description An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.
doi_str_mv 10.1109/TITS.2019.2903529
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TITS_2019_2903529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693545</ieee_id><sourcerecordid>2313660394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6s19mj1L8KAQEW70um2RqU9ps3U2R_nsTWjzNMDzvvPAwdoswQQT7sJgt5hMBaCfCgtTCnrERap1nAGjOh12ozIKGS3aV0rq_Ko04YnZO31tqO981oeVhyb9o1VQbSty3Nf8Ivk68PHDPi_CbTVe-bWnDi6b28ZpdLP0m0c1pjtnny_Ni-pYV76-z6VORVcLKLitzU1Le1-WGhPKGKmW8KAUCGSqteqxyVVMJSgsSEnpCKkVIwlpCqFGO2f3x7y6Gnz2lzq3DPrZ9pRMSpTEgreopPFJVDClFWrpdbLY-HhyCGwy5wZAbDLmToT5zd8w0RPTP58ZKrbT8AxfIX4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2313660394</pqid></control><display><type>article</type><title>Segmentation of Vehicles and Roads by a Low-Channel Lidar</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Jae-Seol ; Jo, Jun-Hyeong ; Park, Tae-Hyoung</creator><creatorcontrib>Lee, Jae-Seol ; Jo, Jun-Hyeong ; Park, Tae-Hyoung</creatorcontrib><description>An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2903529</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3D lidar ; Artificial neural networks ; Autonomous vehicle ; Autonomous vehicles ; Convolution ; convolution neural network ; Image segmentation ; Laser radar ; Lidar ; receptive field ; Roads ; Segmentation ; spherical coordinate ; Three-dimensional displays ; Two dimensional displays ; Vehicles</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-11, Vol.20 (11), p.4251-4256</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</citedby><cites>FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</cites><orcidid>0000-0002-8615-171X ; 0000-0002-3695-344X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693545$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693545$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Jae-Seol</creatorcontrib><creatorcontrib>Jo, Jun-Hyeong</creatorcontrib><creatorcontrib>Park, Tae-Hyoung</creatorcontrib><title>Segmentation of Vehicles and Roads by a Low-Channel Lidar</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.</description><subject>3D lidar</subject><subject>Artificial neural networks</subject><subject>Autonomous vehicle</subject><subject>Autonomous vehicles</subject><subject>Convolution</subject><subject>convolution neural network</subject><subject>Image segmentation</subject><subject>Laser radar</subject><subject>Lidar</subject><subject>receptive field</subject><subject>Roads</subject><subject>Segmentation</subject><subject>spherical coordinate</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><subject>Vehicles</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6s19mj1L8KAQEW70um2RqU9ps3U2R_nsTWjzNMDzvvPAwdoswQQT7sJgt5hMBaCfCgtTCnrERap1nAGjOh12ozIKGS3aV0rq_Ko04YnZO31tqO981oeVhyb9o1VQbSty3Nf8Ivk68PHDPi_CbTVe-bWnDi6b28ZpdLP0m0c1pjtnny_Ni-pYV76-z6VORVcLKLitzU1Le1-WGhPKGKmW8KAUCGSqteqxyVVMJSgsSEnpCKkVIwlpCqFGO2f3x7y6Gnz2lzq3DPrZ9pRMSpTEgreopPFJVDClFWrpdbLY-HhyCGwy5wZAbDLmToT5zd8w0RPTP58ZKrbT8AxfIX4g</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Lee, Jae-Seol</creator><creator>Jo, Jun-Hyeong</creator><creator>Park, Tae-Hyoung</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8615-171X</orcidid><orcidid>https://orcid.org/0000-0002-3695-344X</orcidid></search><sort><creationdate>20191101</creationdate><title>Segmentation of Vehicles and Roads by a Low-Channel Lidar</title><author>Lee, Jae-Seol ; Jo, Jun-Hyeong ; Park, Tae-Hyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b86be801486e24a6ec46a2b210e6eb947c84deb0452e2304a6344e1e299e10d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>3D lidar</topic><topic>Artificial neural networks</topic><topic>Autonomous vehicle</topic><topic>Autonomous vehicles</topic><topic>Convolution</topic><topic>convolution neural network</topic><topic>Image segmentation</topic><topic>Laser radar</topic><topic>Lidar</topic><topic>receptive field</topic><topic>Roads</topic><topic>Segmentation</topic><topic>spherical coordinate</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae-Seol</creatorcontrib><creatorcontrib>Jo, Jun-Hyeong</creatorcontrib><creatorcontrib>Park, Tae-Hyoung</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Jae-Seol</au><au>Jo, Jun-Hyeong</au><au>Park, Tae-Hyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Segmentation of Vehicles and Roads by a Low-Channel Lidar</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>20</volume><issue>11</issue><spage>4251</spage><epage>4256</epage><pages>4251-4256</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2903529</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8615-171X</orcidid><orcidid>https://orcid.org/0000-0002-3695-344X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2019-11, Vol.20 (11), p.4251-4256
issn 1524-9050
1558-0016
language eng
recordid cdi_crossref_primary_10_1109_TITS_2019_2903529
source IEEE Electronic Library (IEL)
subjects 3D lidar
Artificial neural networks
Autonomous vehicle
Autonomous vehicles
Convolution
convolution neural network
Image segmentation
Laser radar
Lidar
receptive field
Roads
Segmentation
spherical coordinate
Three-dimensional displays
Two dimensional displays
Vehicles
title Segmentation of Vehicles and Roads by a Low-Channel Lidar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A23%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Segmentation%20of%20Vehicles%20and%20Roads%20by%20a%20Low-Channel%20Lidar&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Lee,%20Jae-Seol&rft.date=2019-11-01&rft.volume=20&rft.issue=11&rft.spage=4251&rft.epage=4256&rft.pages=4251-4256&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2903529&rft_dat=%3Cproquest_RIE%3E2313660394%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2313660394&rft_id=info:pmid/&rft_ieee_id=8693545&rfr_iscdi=true