Segmentation of Vehicles and Roads by a Low-Channel Lidar

An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2019-11, Vol.20 (11), p.4251-4256
Hauptverfasser: Lee, Jae-Seol, Jo, Jun-Hyeong, Park, Tae-Hyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An effective method to segment vehicles and roads is proposed for autonomous vehicles using low-channel 3D lidar. The distance-view transformation is newly proposed to overcome the low density of top-view data of lidar. In addition, a dilated convolution structure is proposed to expand the receptive field of a convolutional neural network. The proposed network improves the accuracy of segmentation. The experimental results are presented to verify the usefulness of the proposed method.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2019.2903529