An Integrated Approach to Maneuver-Based Trajectory Prediction and Criticality Assessment in Arbitrary Road Environments
This paper describes an integrated Bayesian approach to maneuver-based trajectory prediction and criticality assessment that is not limited to specific driving situations. First, a distribution of high-level driving maneuvers is inferred for each vehicle in the traffic scene via Bayesian inference....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2016-10, Vol.17 (10), p.2751-2766 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes an integrated Bayesian approach to maneuver-based trajectory prediction and criticality assessment that is not limited to specific driving situations. First, a distribution of high-level driving maneuvers is inferred for each vehicle in the traffic scene via Bayesian inference. For this purpose, the domain is modeled in a Bayesian network with both causal and diagnostic evidences and an additional trash maneuver class, which allows the detection of irrational driving behavior and the seamless application from highly structured to nonstructured environments. Subsequently, maneuver-based probabilistic trajectory prediction models are employed to predict each vehicle's configuration forward in time. Random elements in the designed models consider the uncertainty within the future driving maneuver execution of human drivers. Finally, the criticality time metric time-to-critical-collision-probability (TTCCP) is introduced and estimated via Monte Carlo simulations. The TTCCP is a generalization of the time-to-collision (TTC) in arbitrary uncertain multiobject driving environments and valid for longer prediction horizons. All uncertain predictions of all maneuvers of every vehicle are taken into account. Additionally, the criticality assessment considers arbitrarily shaped static environments, and it is shown how parametric free space (PFS) maps can advantageously be utilized for this purpose. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2016.2522507 |