A Novel Approach for Vehicle Inertial Parameter Identification Using a Dual Kalman Filter

This paper proposes a novel algorithm to identify three inertial parameters: sprung mass, yaw moment of inertia, and longitudinal position of the center of gravity. A four-wheel nonlinear vehicle model with roll dynamics and a correlation between the inertial parameters is used for a dual unscented...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2015-02, Vol.16 (1), p.151-161
Hauptverfasser: Sanghyun Hong, Chankyu Lee, Borrelli, Francesco, Hedrick, J. Karl
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel algorithm to identify three inertial parameters: sprung mass, yaw moment of inertia, and longitudinal position of the center of gravity. A four-wheel nonlinear vehicle model with roll dynamics and a correlation between the inertial parameters is used for a dual unscented Kalman filter to simultaneously identify the inertial parameters and the vehicle state. A local observability analysis on the nonlinear vehicle model is used to activate and deactivate different modes of the proposed algorithm. Extensive CarSim simulations and experimental tests show the performance and robustness of the proposed approach on a flat road with a constant tire-road friction coefficient.
ISSN:1524-9050
1558-0016
DOI:10.1109/TITS.2014.2329305