Three-feature based automatic lane detection algorithm (TFALDA) for autonomous driving
Three-feature based automatic lane detection algorithm (TFALDA) is a new lane detection algorithm which is simple, robust, and efficient, thus suitable for real-time processing in cluttered road environments without a priori knowledge on them. Three features of a lane boundary - starting position, d...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent transportation systems 2003-12, Vol.4 (4), p.219-225 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Three-feature based automatic lane detection algorithm (TFALDA) is a new lane detection algorithm which is simple, robust, and efficient, thus suitable for real-time processing in cluttered road environments without a priori knowledge on them. Three features of a lane boundary - starting position, direction (or orientation), and its gray-level intensity features comprising a lane vector are obtained via simple image processing. Out of the many possible lane boundary candidates, the best one is then chosen as the one at a minimum distance from the previous lane vector according to a weighted distance metric in which each feature is assigned a different weight. An evolutionary algorithm then finds the optimal weights for combination of the three features that minimize the rate of detection error. The proposed algorithm was successfully applied to a series of actual road following experiments using the PRV (POSTECH research vehicle) II both on campus roads and nearby highways. |
---|---|
ISSN: | 1524-9050 1558-0016 |
DOI: | 10.1109/TITS.2003.821339 |