Constructing Diverse Inlier Consistency for Partial Point Cloud Registration

Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and betw...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2024-01, Vol.33, p.6535-6549
Hauptverfasser: Zhang, Yu-Xin, Gui, Jie, Kwok, James Tin-Yau
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Partial point cloud registration aims to align partial scans into a shared coordinate system. While learning-based partial point cloud registration methods have achieved remarkable progress, they often fail to take full advantage of the relative positional relationships both within (intra-) and between (inter-) point clouds. This oversight hampers their ability to accurately identify overlapping regions and search for reliable correspondences. To address these limitations, a diverse inlier consistency (DIC) method has been proposed that adaptively embeds the positional information of a reliable correspondence in the intra- and inter-point cloud. Firstly, a diverse inlier consistency-driven region perception (DICdRP) module is devised, which encodes the positional information of the selected correspondence within the intra-point cloud. This module enhances the sensitivity of all points to overlapping regions by recognizing the position of the selected correspondence. Secondly, a diverse inlier consistency-aware correspondence search (DICaCS) module is developed, which leverages relative positions in the inter-point cloud. This module studies an inter-point cloud DIC weight to supervise correspondence compatibility, allowing for precise identification of correspondences and effective outlier filtration. Thirdly, diverse information is integrated throughout our framework to achieve a more holistic and detailed registration process. Extensive experiments on object-level and scene-level datasets demonstrate the superior performance of the proposed algorithm. The code is available at https://github.com/yxzhang15/DIC .
ISSN:1057-7149
1941-0042
1941-0042
DOI:10.1109/TIP.2024.3492700