Learning Domain Invariant Representations for Generalizable Person Re-Identification
Generalizable person Re-Identification (ReID) aims to learn ready-to-use cross-domain representations for direct cross-data evaluation, which has attracted growing attention in the recent computer vision (CV) community. In this work, we construct a structural causal model (SCM) among identity labels...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2023-01, Vol.32, p.509-523 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Generalizable person Re-Identification (ReID) aims to learn ready-to-use cross-domain representations for direct cross-data evaluation, which has attracted growing attention in the recent computer vision (CV) community. In this work, we construct a structural causal model (SCM) among identity labels, identity-specific factors (clothing/shoes color etc.), and domain-specific factors (background, viewpoints etc.). According to the causal analysis, we propose a novel Domain Invariant Representation Learning for generalizable person Re-Identification (DIR-ReID) framework. Specifically, we propose to disentangle the identity-specific and domain-specific factors into two independent feature spaces, based on which an effective backdoor adjustment approximate implementation is proposed for serving as a causal intervention towards the SCM. Extensive experiments have been conducted, showing that DIR-ReID outperforms state-of-the-art (SOTA) methods on large-scale domain generalization (DG) ReID benchmarks. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2022.3229621 |