Deep Motion Prior for Weakly-Supervised Temporal Action Localization

Weakly-Supervised Temporal Action Localization (WSTAL) aims to localize actions in untrimmed videos with only video-level labels. Currently, most state-of-the-art WSTAL methods follow a Multi-Instance Learning (MIL) pipeline: producing snippet-level predictions first and then aggregating to the vide...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2022, Vol.31, p.1-1
Hauptverfasser: Cao, Meng, Zhang, Can, Chen, Long, Shou, Mike Zheng, Zou, Yuexian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Weakly-Supervised Temporal Action Localization (WSTAL) aims to localize actions in untrimmed videos with only video-level labels. Currently, most state-of-the-art WSTAL methods follow a Multi-Instance Learning (MIL) pipeline: producing snippet-level predictions first and then aggregating to the video-level prediction. However, we argue that existing methods have overlooked two important drawbacks: 1) inadequate use of motion information and 2) the incompatibility of prevailing cross-entropy training loss. In this paper, we analyze that the motion cues behind the optical flow features are complementary informative. Inspired by this, we propose to build a context-dependent motion prior, termed as motionness . Specifically, a motion graph is introduced to model motionness based on the local motion carrier ( e.g ., optical flow). In addition, to highlight more informative video snippets, a motion-guided loss is proposed to modulate the network training conditioned on motionness scores. Extensive ablation studies confirm that motionness efficaciously models action-of-interest, and the motion-guided loss leads to more accurate results. Besides, our motion-guided loss is a plug-and-play loss function and is applicable with existing WSTAL methods. Without loss of generality, based on the standard MIL pipeline, our method achieves new state-of-the-art performance on three challenging benchmarks, including THUMOS'14, ActivityNet v1.2 and v1.3.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2022.3193752