Semantic Segmentation With Context Encoding and Multi-Path Decoding

Semantic image segmentation aims to classify every pixel of a scene image to one of many classes. It implicitly involves object recognition, localization, and boundary delineation. In this paper, we propose a segmentation network called CGBNet to enhance the segmentation performance by context encod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2020-01, Vol.29, p.3520-3533
Hauptverfasser: Ding, Henghui, Jiang, Xudong, Shuai, Bing, Liu, Ai Qun, Wang, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Semantic image segmentation aims to classify every pixel of a scene image to one of many classes. It implicitly involves object recognition, localization, and boundary delineation. In this paper, we propose a segmentation network called CGBNet to enhance the segmentation performance by context encoding and multi-path decoding. We first propose a context encoding module that generates context-contrasted local feature to make use of the informative context and the discriminative local information. This context encoding module greatly improves the segmentation performance, especially for inconspicuous objects. Furthermore, we propose a scale-selection scheme to selectively fuse the segmentation results from different-scales of features at every spatial position. It adaptively selects appropriate score maps from rich scales of features. To improve the segmentation performance results at boundary, we further propose a boundary delineation module that encourages the location-specific very-low-level features near the boundaries to take part in the final prediction and suppresses them far from the boundaries. The proposed segmentation network achieves very competitive performance in terms of all three different evaluation metrics consistently on the six popular scene segmentation datasets, Pascal Context, SUN-RGBD, Sift Flow, COCO Stuff, ADE20K, and Cityscapes.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2019.2962685