Convolutional Sparse Coding for RGB+NIR Imaging

Emerging sensor designs increasingly rely on novel color filter arrays (CFAs) to sample the incident spectrum in unconventional ways. In particular, capturing a near-infrared (NIR) channel along with conventional RGB color is an exciting new imaging modality. RGB+NIR sensing has broad applications i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2018-04, Vol.27 (4), p.1611-1625
Hauptverfasser: Xuemei Hu, Heide, Felix, Qionghai Dai, Wetzstein, Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emerging sensor designs increasingly rely on novel color filter arrays (CFAs) to sample the incident spectrum in unconventional ways. In particular, capturing a near-infrared (NIR) channel along with conventional RGB color is an exciting new imaging modality. RGB+NIR sensing has broad applications in computational photography, such as low-light denoising, it has applications in computer vision, such as facial recognition and tracking, and it paves the way toward low-cost single-sensor RGB and depth imaging using structured illumination. However, cost-effective commercial CFAs suffer from severe spectral cross talk. This cross talk represents a major challenge in high-quality RGB+NIR imaging, rendering existing spatially multiplexed sensor designs impractical. In this work, we introduce a new approach to RGB+NIR image reconstruction using learned convolutional sparse priors. We demonstrate high-quality color and NIR imaging for challenging scenes, even including high-frequency structured NIR illumination. The effectiveness of the proposed method is validated on a large data set of experimental captures, and simulated benchmark results which demonstrate that this work achieves unprecedented reconstruction quality.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2017.2781303