Partial Membership Latent Dirichlet Allocation for Soft Image Segmentation

Topic models [e.g., probabilistic latent semantic analysis, latent Dirichlet allocation (LDA), and supervised LDA] have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2017-12, Vol.26 (12), p.5590-5602
Hauptverfasser: Chao Chen, Zare, Alina, Trinh, Huy N., Omotara, Gbenga O., Cobb, James Tory, Lagaunne, Timotius A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Topic models [e.g., probabilistic latent semantic analysis, latent Dirichlet allocation (LDA), and supervised LDA] have been widely used for segmenting imagery. However, these models are confined to crisp segmentation, forcing a visual word (i.e., an image patch) to belong to one and only one topic. Yet, there are many images in which some regions cannot be assigned a crisp categorical label (e.g., transition regions between a foggy sky and the ground or between sand and water at a beach). In these cases, a visual word is best represented with partial memberships across multiple topics. To address this, we present a partial membership LDA (PM-LDA) model and an associated parameter estimation algorithm. This model can be useful for imagery, where a visual word may be a mixture of multiple topics. Experimental results on visual and sonar imagery show that PM-LDA can produce both crisp and soft semantic image segmentations; a capability previous topic modeling methods do not have.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2017.2736419