A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration
Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabil...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2015-03, Vol.24 (3), p.1076-1086 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1086 |
---|---|
container_issue | 3 |
container_start_page | 1076 |
container_title | IEEE transactions on image processing |
container_volume | 24 |
creator | Chen, Jixu Ji, Qiang |
description | Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve |
doi_str_mv | 10.1109/TIP.2014.2383326 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2014_2383326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6990593</ieee_id><sourcerecordid>3760053821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MoPqp3QZCAFy9bk8ljN8dS6gMEe6gIXpZkN6vR7aYmu6D-9aa0evA0A_PNzI8PoVNKxpQSdbW4m4-BUD4GVjAGcgcdUsVpRgiH3dQTkWc55eoAHcX4RhIpqNxHByAEA1rwQ_Q8wfPgjTaudbF3FZ6sVsHr6hX3Hj90ressnn1ZfKO_LV4EXb277gU_uf7VDz2efa5aV7kez22IvtMtnurWmaB757tjtNfoNtqTbR2hx-vZYnqb3T_c3E0n91nFeN5nUHNFFSkazgwjUpK8LhpFGzB5YUDWNaMi59wIrSWzSoPkFurcEK61kSDYCF1u7qbgH4ONfbl0sbJtqzvrh1hSKUEyBQISevEPffNDSLnXlFIAokgiR4hsqCr4GINtylVwSx2-SkrKtfcyeS_X3sut97Ryvj08mKWt_xZ-RSfgbAM4a-3fOP0kQjH2A2NphNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699225838</pqid></control><display><type>article</type><title>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jixu ; Ji, Qiang</creator><creatorcontrib>Chen, Jixu ; Ji, Qiang</creatorcontrib><description>Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve <;3° accuracy for different people without explicit personal calibration.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2383326</identifier><identifier>PMID: 25532184</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Bayes Theorem ; Calibration ; dynamic Bayesian network ; Estimation ; Fixation, Ocular - physiology ; gaze calibration ; Gaze estimation ; Humans ; Image Processing, Computer-Assisted - methods ; Optical imaging ; Probabilistic logic ; Probability distribution ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on image processing, 2015-03, Vol.24 (3), p.1076-1086</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</citedby><cites>FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6990593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6990593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25532184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jixu</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><title>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve <;3° accuracy for different people without explicit personal calibration.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Calibration</subject><subject>dynamic Bayesian network</subject><subject>Estimation</subject><subject>Fixation, Ocular - physiology</subject><subject>gaze calibration</subject><subject>Gaze estimation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Optical imaging</subject><subject>Probabilistic logic</subject><subject>Probability distribution</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkMtLAzEQh4MoPqp3QZCAFy9bk8ljN8dS6gMEe6gIXpZkN6vR7aYmu6D-9aa0evA0A_PNzI8PoVNKxpQSdbW4m4-BUD4GVjAGcgcdUsVpRgiH3dQTkWc55eoAHcX4RhIpqNxHByAEA1rwQ_Q8wfPgjTaudbF3FZ6sVsHr6hX3Hj90ressnn1ZfKO_LV4EXb277gU_uf7VDz2efa5aV7kez22IvtMtnurWmaB757tjtNfoNtqTbR2hx-vZYnqb3T_c3E0n91nFeN5nUHNFFSkazgwjUpK8LhpFGzB5YUDWNaMi59wIrSWzSoPkFurcEK61kSDYCF1u7qbgH4ONfbl0sbJtqzvrh1hSKUEyBQISevEPffNDSLnXlFIAokgiR4hsqCr4GINtylVwSx2-SkrKtfcyeS_X3sut97Ryvj08mKWt_xZ-RSfgbAM4a-3fOP0kQjH2A2NphNI</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Chen, Jixu</creator><creator>Ji, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</title><author>Chen, Jixu ; Ji, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Calibration</topic><topic>dynamic Bayesian network</topic><topic>Estimation</topic><topic>Fixation, Ocular - physiology</topic><topic>gaze calibration</topic><topic>Gaze estimation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Optical imaging</topic><topic>Probabilistic logic</topic><topic>Probability distribution</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jixu</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jixu</au><au>Ji, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-03</date><risdate>2015</risdate><volume>24</volume><issue>3</issue><spage>1076</spage><epage>1086</epage><pages>1076-1086</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve <;3° accuracy for different people without explicit personal calibration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25532184</pmid><doi>10.1109/TIP.2014.2383326</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1057-7149 |
ispartof | IEEE transactions on image processing, 2015-03, Vol.24 (3), p.1076-1086 |
issn | 1057-7149 1941-0042 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIP_2014_2383326 |
source | IEEE Electronic Library (IEL) |
subjects | Animals Bayes Theorem Calibration dynamic Bayesian network Estimation Fixation, Ocular - physiology gaze calibration Gaze estimation Humans Image Processing, Computer-Assisted - methods Optical imaging Probabilistic logic Probability distribution Three-dimensional displays Visualization |
title | A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Approach%20to%20Online%20Eye%20Gaze%20Tracking%20Without%20Explicit%20Personal%20Calibration&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chen,%20Jixu&rft.date=2015-03&rft.volume=24&rft.issue=3&rft.spage=1076&rft.epage=1086&rft.pages=1076-1086&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2383326&rft_dat=%3Cproquest_RIE%3E3760053821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699225838&rft_id=info:pmid/25532184&rft_ieee_id=6990593&rfr_iscdi=true |