A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration

Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2015-03, Vol.24 (3), p.1076-1086
Hauptverfasser: Chen, Jixu, Ji, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1086
container_issue 3
container_start_page 1076
container_title IEEE transactions on image processing
container_volume 24
creator Chen, Jixu
Ji, Qiang
description Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve
doi_str_mv 10.1109/TIP.2014.2383326
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIP_2014_2383326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6990593</ieee_id><sourcerecordid>3760053821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</originalsourceid><addsrcrecordid>eNpdkMtLAzEQh4MoPqp3QZCAFy9bk8ljN8dS6gMEe6gIXpZkN6vR7aYmu6D-9aa0evA0A_PNzI8PoVNKxpQSdbW4m4-BUD4GVjAGcgcdUsVpRgiH3dQTkWc55eoAHcX4RhIpqNxHByAEA1rwQ_Q8wfPgjTaudbF3FZ6sVsHr6hX3Hj90ressnn1ZfKO_LV4EXb277gU_uf7VDz2efa5aV7kez22IvtMtnurWmaB757tjtNfoNtqTbR2hx-vZYnqb3T_c3E0n91nFeN5nUHNFFSkazgwjUpK8LhpFGzB5YUDWNaMi59wIrSWzSoPkFurcEK61kSDYCF1u7qbgH4ONfbl0sbJtqzvrh1hSKUEyBQISevEPffNDSLnXlFIAokgiR4hsqCr4GINtylVwSx2-SkrKtfcyeS_X3sut97Ryvj08mKWt_xZ-RSfgbAM4a-3fOP0kQjH2A2NphNI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1699225838</pqid></control><display><type>article</type><title>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Jixu ; Ji, Qiang</creator><creatorcontrib>Chen, Jixu ; Ji, Qiang</creatorcontrib><description>Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve &lt;;3° accuracy for different people without explicit personal calibration.</description><identifier>ISSN: 1057-7149</identifier><identifier>EISSN: 1941-0042</identifier><identifier>DOI: 10.1109/TIP.2014.2383326</identifier><identifier>PMID: 25532184</identifier><identifier>CODEN: IIPRE4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Animals ; Bayes Theorem ; Calibration ; dynamic Bayesian network ; Estimation ; Fixation, Ocular - physiology ; gaze calibration ; Gaze estimation ; Humans ; Image Processing, Computer-Assisted - methods ; Optical imaging ; Probabilistic logic ; Probability distribution ; Three-dimensional displays ; Visualization</subject><ispartof>IEEE transactions on image processing, 2015-03, Vol.24 (3), p.1076-1086</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</citedby><cites>FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6990593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6990593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25532184$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Jixu</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><title>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</title><title>IEEE transactions on image processing</title><addtitle>TIP</addtitle><addtitle>IEEE Trans Image Process</addtitle><description>Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve &lt;;3° accuracy for different people without explicit personal calibration.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Calibration</subject><subject>dynamic Bayesian network</subject><subject>Estimation</subject><subject>Fixation, Ocular - physiology</subject><subject>gaze calibration</subject><subject>Gaze estimation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Optical imaging</subject><subject>Probabilistic logic</subject><subject>Probability distribution</subject><subject>Three-dimensional displays</subject><subject>Visualization</subject><issn>1057-7149</issn><issn>1941-0042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkMtLAzEQh4MoPqp3QZCAFy9bk8ljN8dS6gMEe6gIXpZkN6vR7aYmu6D-9aa0evA0A_PNzI8PoVNKxpQSdbW4m4-BUD4GVjAGcgcdUsVpRgiH3dQTkWc55eoAHcX4RhIpqNxHByAEA1rwQ_Q8wfPgjTaudbF3FZ6sVsHr6hX3Hj90ressnn1ZfKO_LV4EXb277gU_uf7VDz2efa5aV7kez22IvtMtnurWmaB757tjtNfoNtqTbR2hx-vZYnqb3T_c3E0n91nFeN5nUHNFFSkazgwjUpK8LhpFGzB5YUDWNaMi59wIrSWzSoPkFurcEK61kSDYCF1u7qbgH4ONfbl0sbJtqzvrh1hSKUEyBQISevEPffNDSLnXlFIAokgiR4hsqCr4GINtylVwSx2-SkrKtfcyeS_X3sut97Ryvj08mKWt_xZ-RSfgbAM4a-3fOP0kQjH2A2NphNI</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Chen, Jixu</creator><creator>Ji, Qiang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</title><author>Chen, Jixu ; Ji, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-2d491908f43b306607d8f91f2b78b26dd315744b5aa63e9a264e2d7b04aab6253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Calibration</topic><topic>dynamic Bayesian network</topic><topic>Estimation</topic><topic>Fixation, Ocular - physiology</topic><topic>gaze calibration</topic><topic>Gaze estimation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Optical imaging</topic><topic>Probabilistic logic</topic><topic>Probability distribution</topic><topic>Three-dimensional displays</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Jixu</creatorcontrib><creatorcontrib>Ji, Qiang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on image processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Jixu</au><au>Ji, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration</atitle><jtitle>IEEE transactions on image processing</jtitle><stitle>TIP</stitle><addtitle>IEEE Trans Image Process</addtitle><date>2015-03</date><risdate>2015</risdate><volume>24</volume><issue>3</issue><spage>1076</spage><epage>1086</epage><pages>1076-1086</pages><issn>1057-7149</issn><eissn>1941-0042</eissn><coden>IIPRE4</coden><abstract>Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve &lt;;3° accuracy for different people without explicit personal calibration.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25532184</pmid><doi>10.1109/TIP.2014.2383326</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1057-7149
ispartof IEEE transactions on image processing, 2015-03, Vol.24 (3), p.1076-1086
issn 1057-7149
1941-0042
language eng
recordid cdi_crossref_primary_10_1109_TIP_2014_2383326
source IEEE Electronic Library (IEL)
subjects Animals
Bayes Theorem
Calibration
dynamic Bayesian network
Estimation
Fixation, Ocular - physiology
gaze calibration
Gaze estimation
Humans
Image Processing, Computer-Assisted - methods
Optical imaging
Probabilistic logic
Probability distribution
Three-dimensional displays
Visualization
title A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T02%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Probabilistic%20Approach%20to%20Online%20Eye%20Gaze%20Tracking%20Without%20Explicit%20Personal%20Calibration&rft.jtitle=IEEE%20transactions%20on%20image%20processing&rft.au=Chen,%20Jixu&rft.date=2015-03&rft.volume=24&rft.issue=3&rft.spage=1076&rft.epage=1086&rft.pages=1076-1086&rft.issn=1057-7149&rft.eissn=1941-0042&rft.coden=IIPRE4&rft_id=info:doi/10.1109/TIP.2014.2383326&rft_dat=%3Cproquest_RIE%3E3760053821%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1699225838&rft_id=info:pmid/25532184&rft_ieee_id=6990593&rfr_iscdi=true