A Probabilistic Approach to Online Eye Gaze Tracking Without Explicit Personal Calibration

Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2015-03, Vol.24 (3), p.1076-1086
Hauptverfasser: Chen, Jixu, Ji, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Existing eye gaze tracking systems typically require an explicit personal calibration process in order to estimate certain person-specific eye parameters. For natural human computer interaction, such a personal calibration is often inconvenient and unnatural. In this paper, we propose a new probabilistic eye gaze tracking system without explicit personal calibration. Unlike the conventional eye gaze tracking methods, which estimate the eye parameter deterministically using known gaze points, our approach estimates the probability distributions of the eye parameter and eye gaze. Using an incremental learning framework, the subject does not need personal calibration before using the system. His/her eye parameter estimation and gaze estimation can be improved gradually when he/she is naturally interacting with the system. The experimental result shows that the proposed system can achieve
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2014.2383326