Visual Tracking in High-Dimensional State Space by Appearance-Guided Particle Filtering
In this paper, we propose a new approach, appearance-guided particle filtering (AGPF), for high degree-of-freedom visual tracking from an image sequence. This method adopts some known attractors in the state space and integrates both appearance and motion-transition information for visual tracking....
Gespeichert in:
Veröffentlicht in: | IEEE transactions on image processing 2008-07, Vol.17 (7), p.1154-1167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose a new approach, appearance-guided particle filtering (AGPF), for high degree-of-freedom visual tracking from an image sequence. This method adopts some known attractors in the state space and integrates both appearance and motion-transition information for visual tracking. A probability propagation model based on these two types of information is derived from a Bayesian formulation, and a particle filtering framework is developed to realize it. Experimental results demonstrate that the proposed method is effective for high degree-of-freedom visual tracking problems, such as articulated hand tracking and lip-contour tracking. |
---|---|
ISSN: | 1057-7149 1941-0042 |
DOI: | 10.1109/TIP.2008.924283 |