Image Tracking of Fire Extinguishing Jet Drop Point Based on Improved ENet and Robust Adaptive Cubature Kalman Filtering

Accurate image tracking of fire extinguishing jets is crucial to achieving automatic firefighting. However, inevitable noise interference occurs during image processing, adversely affecting precise tracking. In order to address this issue, a method for tracking the jet drop point (JDP) of a fire ext...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024, Vol.73, p.1-12
Hauptverfasser: Pan, Lu, Li, Wei, Zhu, Jinsong, Chen, Zhengsheng, Zhao, Juxian, Liu, Zhongguan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Accurate image tracking of fire extinguishing jets is crucial to achieving automatic firefighting. However, inevitable noise interference occurs during image processing, adversely affecting precise tracking. In order to address this issue, a method for tracking the jet drop point (JDP) of a fire extinguishing jet is proposed based on an improved efficient neural network (ENet) and robust adaptive cubature Kalman filter (CKF). A novel JDP image state transition model is established to construct the state space equations and depict the motion state of the JDP in images. A two-stage method for recognizing JDP is proposed, which includes an improved ENet and a directional progressive curve search method to enhance the accuracy of observation. A CKF based on the Huber function is proposed to improve the adaptability and robustness of the image tracking method, which takes into account the advantages of L1 and L2 norms. The updated formulas for the state and covariance matrices are derived. Furthermore, the tracking method is improved by the Sage-Husa method, which considers the unknown distribution of noise. Experiments on actual firefighting platforms demonstrate that the proposed method exhibits robustness and adaptability compared to traditional CKF.
ISSN:0018-9456
1557-9662
DOI:10.1109/TIM.2024.3451590