A Compressive Learning-based Scheme for Nonlinear Reconstructions in Electrical Impedance Tomography

Recently, the application of deep learning techniques has provided significant advances in solving nonlinear electrical impedance tomography (EIT) problems. However, when state-of-the-art performance is pushed further, these models become bigger and more difficult to use in computation-limited scena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2024-01, Vol.73, p.1-1
Hauptverfasser: Zong, Zheng, Wang, Yusong, He, Siyuan, Zhu, Yong-Jian, Wei, Zhun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 73
creator Zong, Zheng
Wang, Yusong
He, Siyuan
Zhu, Yong-Jian
Wei, Zhun
description Recently, the application of deep learning techniques has provided significant advances in solving nonlinear electrical impedance tomography (EIT) problems. However, when state-of-the-art performance is pushed further, these models become bigger and more difficult to use in computation-limited scenarios. In order to reduce the computational overhead and memory footprint, a EIT-specific compressive learning-based scheme (CLS) is proposed. The CLS is implemented in two-stage strategy. Firstly, a non-iterative inverse operator, named dominant current based method, is introduced to map the EIT measurement data to approximate conductivity images. Secondly, a wavelet-based compressive CNN with separable convolution is learned by rough image and target image pairs, where a custom loss function with mixed structural similarity (SSIM) metrics is proposed for training. Our proposed CLS has only 0.26% trainable parameters and 0.61% network size of benchmark methods, including the dominant current deep learning scheme (DC-DLS) and the deep D-bar method. Nevertheless, extensive numerical and practical experiments demonstrate that it achieves a comparable level of reconstruction quality when compared to these benchmark methods. As a learning-based approach, it also exhibiters advantages over traditional iterative methods, such as the subspace optimization method (SOM). It is anticipated that the suggested CLS would encourage other compression researches and applications in EIT.
doi_str_mv 10.1109/TIM.2023.3346500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2023_3346500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10373182</ieee_id><sourcerecordid>2912948377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-603e4fec2f6542aa7840853ea97af7a1091449fedaf122f12a0972219cfd2ea63</originalsourceid><addsrcrecordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma5PNsZSqhaqg9RxidtJu6W7WZCv0vzelHjwMMzDvvWF-CN1SMqGU6IfV4mXCCOMTzoUsCTlDI1qWqtBSsnM0IoRWhRalvERXKW0JIUoKNUL1FM9C20dIqfkBvAQbu6ZbF182QY0_3AZawD5E_Bq6XdPlNX4HF7o0xL0bmjzgpsPzHbghNs7u8KLtobadA7wKbVhH228O1-jC212Cm78-Rp-P89XsuVi-PS1m02XhmCiHQhIOwoNjXpaCWasqQaqSg9XKemXzl1QI7XO8p4zlskQrxqh2vmZgJR-j-1NuH8P3HtJgtmEfu3zSME2ZFhVXKqvISeViSCmCN31sWhsPhhJzZGkyS3Nkaf5YZsvdydIAwD85V5xWjP8CBrtwvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2912948377</pqid></control><display><type>article</type><title>A Compressive Learning-based Scheme for Nonlinear Reconstructions in Electrical Impedance Tomography</title><source>IEEE Electronic Library (IEL)</source><creator>Zong, Zheng ; Wang, Yusong ; He, Siyuan ; Zhu, Yong-Jian ; Wei, Zhun</creator><creatorcontrib>Zong, Zheng ; Wang, Yusong ; He, Siyuan ; Zhu, Yong-Jian ; Wei, Zhun</creatorcontrib><description>Recently, the application of deep learning techniques has provided significant advances in solving nonlinear electrical impedance tomography (EIT) problems. However, when state-of-the-art performance is pushed further, these models become bigger and more difficult to use in computation-limited scenarios. In order to reduce the computational overhead and memory footprint, a EIT-specific compressive learning-based scheme (CLS) is proposed. The CLS is implemented in two-stage strategy. Firstly, a non-iterative inverse operator, named dominant current based method, is introduced to map the EIT measurement data to approximate conductivity images. Secondly, a wavelet-based compressive CNN with separable convolution is learned by rough image and target image pairs, where a custom loss function with mixed structural similarity (SSIM) metrics is proposed for training. Our proposed CLS has only 0.26% trainable parameters and 0.61% network size of benchmark methods, including the dominant current deep learning scheme (DC-DLS) and the deep D-bar method. Nevertheless, extensive numerical and practical experiments demonstrate that it achieves a comparable level of reconstruction quality when compared to these benchmark methods. As a learning-based approach, it also exhibiters advantages over traditional iterative methods, such as the subspace optimization method (SOM). It is anticipated that the suggested CLS would encourage other compression researches and applications in EIT.</description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2023.3346500</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Benchmarks ; compressive convolution neural network ; Computational modeling ; Conductivity ; Deep learning ; Electrical impedance ; Electrical impedance tomography ; Electrical impedance tomography (EIT) ; Image reconstruction ; Iterative methods ; Machine learning ; Optimization methods ; Tensors ; Tomography ; wavelet</subject><ispartof>IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-603e4fec2f6542aa7840853ea97af7a1091449fedaf122f12a0972219cfd2ea63</cites><orcidid>0000-0002-3516-0261 ; 0000-0002-5924-1998 ; 0000-0002-9393-9812 ; 0000-0002-8699-3749 ; 0000-0002-9772-6400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10373182$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10373182$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zong, Zheng</creatorcontrib><creatorcontrib>Wang, Yusong</creatorcontrib><creatorcontrib>He, Siyuan</creatorcontrib><creatorcontrib>Zhu, Yong-Jian</creatorcontrib><creatorcontrib>Wei, Zhun</creatorcontrib><title>A Compressive Learning-based Scheme for Nonlinear Reconstructions in Electrical Impedance Tomography</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description>Recently, the application of deep learning techniques has provided significant advances in solving nonlinear electrical impedance tomography (EIT) problems. However, when state-of-the-art performance is pushed further, these models become bigger and more difficult to use in computation-limited scenarios. In order to reduce the computational overhead and memory footprint, a EIT-specific compressive learning-based scheme (CLS) is proposed. The CLS is implemented in two-stage strategy. Firstly, a non-iterative inverse operator, named dominant current based method, is introduced to map the EIT measurement data to approximate conductivity images. Secondly, a wavelet-based compressive CNN with separable convolution is learned by rough image and target image pairs, where a custom loss function with mixed structural similarity (SSIM) metrics is proposed for training. Our proposed CLS has only 0.26% trainable parameters and 0.61% network size of benchmark methods, including the dominant current deep learning scheme (DC-DLS) and the deep D-bar method. Nevertheless, extensive numerical and practical experiments demonstrate that it achieves a comparable level of reconstruction quality when compared to these benchmark methods. As a learning-based approach, it also exhibiters advantages over traditional iterative methods, such as the subspace optimization method (SOM). It is anticipated that the suggested CLS would encourage other compression researches and applications in EIT.</description><subject>Artificial neural networks</subject><subject>Benchmarks</subject><subject>compressive convolution neural network</subject><subject>Computational modeling</subject><subject>Conductivity</subject><subject>Deep learning</subject><subject>Electrical impedance</subject><subject>Electrical impedance tomography</subject><subject>Electrical impedance tomography (EIT)</subject><subject>Image reconstruction</subject><subject>Iterative methods</subject><subject>Machine learning</subject><subject>Optimization methods</subject><subject>Tensors</subject><subject>Tomography</subject><subject>wavelet</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LAzEQxYMoWKt3Dx4Cnrfma5PNsZSqhaqg9RxidtJu6W7WZCv0vzelHjwMMzDvvWF-CN1SMqGU6IfV4mXCCOMTzoUsCTlDI1qWqtBSsnM0IoRWhRalvERXKW0JIUoKNUL1FM9C20dIqfkBvAQbu6ZbF182QY0_3AZawD5E_Bq6XdPlNX4HF7o0xL0bmjzgpsPzHbghNs7u8KLtobadA7wKbVhH228O1-jC212Cm78-Rp-P89XsuVi-PS1m02XhmCiHQhIOwoNjXpaCWasqQaqSg9XKemXzl1QI7XO8p4zlskQrxqh2vmZgJR-j-1NuH8P3HtJgtmEfu3zSME2ZFhVXKqvISeViSCmCN31sWhsPhhJzZGkyS3Nkaf5YZsvdydIAwD85V5xWjP8CBrtwvA</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Zong, Zheng</creator><creator>Wang, Yusong</creator><creator>He, Siyuan</creator><creator>Zhu, Yong-Jian</creator><creator>Wei, Zhun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3516-0261</orcidid><orcidid>https://orcid.org/0000-0002-5924-1998</orcidid><orcidid>https://orcid.org/0000-0002-9393-9812</orcidid><orcidid>https://orcid.org/0000-0002-8699-3749</orcidid><orcidid>https://orcid.org/0000-0002-9772-6400</orcidid></search><sort><creationdate>20240101</creationdate><title>A Compressive Learning-based Scheme for Nonlinear Reconstructions in Electrical Impedance Tomography</title><author>Zong, Zheng ; Wang, Yusong ; He, Siyuan ; Zhu, Yong-Jian ; Wei, Zhun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-603e4fec2f6542aa7840853ea97af7a1091449fedaf122f12a0972219cfd2ea63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural networks</topic><topic>Benchmarks</topic><topic>compressive convolution neural network</topic><topic>Computational modeling</topic><topic>Conductivity</topic><topic>Deep learning</topic><topic>Electrical impedance</topic><topic>Electrical impedance tomography</topic><topic>Electrical impedance tomography (EIT)</topic><topic>Image reconstruction</topic><topic>Iterative methods</topic><topic>Machine learning</topic><topic>Optimization methods</topic><topic>Tensors</topic><topic>Tomography</topic><topic>wavelet</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zong, Zheng</creatorcontrib><creatorcontrib>Wang, Yusong</creatorcontrib><creatorcontrib>He, Siyuan</creatorcontrib><creatorcontrib>Zhu, Yong-Jian</creatorcontrib><creatorcontrib>Wei, Zhun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zong, Zheng</au><au>Wang, Yusong</au><au>He, Siyuan</au><au>Zhu, Yong-Jian</au><au>Wei, Zhun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Compressive Learning-based Scheme for Nonlinear Reconstructions in Electrical Impedance Tomography</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2024-01-01</date><risdate>2024</risdate><volume>73</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract>Recently, the application of deep learning techniques has provided significant advances in solving nonlinear electrical impedance tomography (EIT) problems. However, when state-of-the-art performance is pushed further, these models become bigger and more difficult to use in computation-limited scenarios. In order to reduce the computational overhead and memory footprint, a EIT-specific compressive learning-based scheme (CLS) is proposed. The CLS is implemented in two-stage strategy. Firstly, a non-iterative inverse operator, named dominant current based method, is introduced to map the EIT measurement data to approximate conductivity images. Secondly, a wavelet-based compressive CNN with separable convolution is learned by rough image and target image pairs, where a custom loss function with mixed structural similarity (SSIM) metrics is proposed for training. Our proposed CLS has only 0.26% trainable parameters and 0.61% network size of benchmark methods, including the dominant current deep learning scheme (DC-DLS) and the deep D-bar method. Nevertheless, extensive numerical and practical experiments demonstrate that it achieves a comparable level of reconstruction quality when compared to these benchmark methods. As a learning-based approach, it also exhibiters advantages over traditional iterative methods, such as the subspace optimization method (SOM). It is anticipated that the suggested CLS would encourage other compression researches and applications in EIT.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2023.3346500</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3516-0261</orcidid><orcidid>https://orcid.org/0000-0002-5924-1998</orcidid><orcidid>https://orcid.org/0000-0002-9393-9812</orcidid><orcidid>https://orcid.org/0000-0002-8699-3749</orcidid><orcidid>https://orcid.org/0000-0002-9772-6400</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2024-01, Vol.73, p.1-1
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2023_3346500
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Benchmarks
compressive convolution neural network
Computational modeling
Conductivity
Deep learning
Electrical impedance
Electrical impedance tomography
Electrical impedance tomography (EIT)
Image reconstruction
Iterative methods
Machine learning
Optimization methods
Tensors
Tomography
wavelet
title A Compressive Learning-based Scheme for Nonlinear Reconstructions in Electrical Impedance Tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A19%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Compressive%20Learning-based%20Scheme%20for%20Nonlinear%20Reconstructions%20in%20Electrical%20Impedance%20Tomography&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Zong,%20Zheng&rft.date=2024-01-01&rft.volume=73&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2023.3346500&rft_dat=%3Cproquest_RIE%3E2912948377%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2912948377&rft_id=info:pmid/&rft_ieee_id=10373182&rfr_iscdi=true