A Smart Primary Pad With Integrated TMR Sensors for Wirelessly Charged EVs

In this article, a simple and efficient sensing mechanism, using tunneling magnetoresistance (TMR) sensors and a measurement scheme is presented to enable the primary pad to automatically detect and identify the secondary pad in an electric vehicle (EV). In wirelessly charged EVs, a primary pad that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on instrumentation and measurement 2021, Vol.70, p.1-10
Hauptverfasser: Vaheeda, Jeshma Thalapil, George, Boby
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10
container_issue
container_start_page 1
container_title IEEE transactions on instrumentation and measurement
container_volume 70
creator Vaheeda, Jeshma Thalapil
George, Boby
description In this article, a simple and efficient sensing mechanism, using tunneling magnetoresistance (TMR) sensors and a measurement scheme is presented to enable the primary pad to automatically detect and identify the secondary pad in an electric vehicle (EV). In wirelessly charged EVs, a primary pad that can interoperate with different types of secondary pads is highly beneficial. A bipolar pad (BPP) primary can be configured to transfer power to a circular pad (CP) or a double-D pad (DDP) secondary. In the proposed system, during the sensing phase, the primary pad is excited at a very low current (
doi_str_mv 10.1109/TIM.2021.3102680
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIM_2021_3102680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9507464</ieee_id><sourcerecordid>2560926551</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e9b3bd5fa0c3a0bb8169f1c3329e38fd00c8a332d100f8d906969140929576c13</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvA89aZZJPdHMtStdJisVWPIbub9IParcn20H9vyhZPwzDPO8M8hNwjDBBBPS3G0wEDhgOOwGQOF6SHQmSJkpJdkh4A5olKhbwmNyFsACCTadYjb0M6_zG-pTO_jvVIZ6am3-t2Rce71i69aW1NF9MPOre70PhAXePj3NutDWF7pMXK-GVERl_hllw5sw327lz75PN5tChek8n7y7gYTpKKKWwTq0pe1sIZqLiBssxRKocV50xZnrsaoMpN7GoEcHmtQCqpMAXFlMhkhbxPHru9e9_8Hmxo9aY5-F08qZmQkZNCnCjoqMo3IXjr9L77UCPokzEdjemTMX02FiMPXWRtrf3HlYAslSn_A9MSZLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560926551</pqid></control><display><type>article</type><title>A Smart Primary Pad With Integrated TMR Sensors for Wirelessly Charged EVs</title><source>IEEE Electronic Library (IEL)</source><creator>Vaheeda, Jeshma Thalapil ; George, Boby</creator><creatorcontrib>Vaheeda, Jeshma Thalapil ; George, Boby</creatorcontrib><description><![CDATA[In this article, a simple and efficient sensing mechanism, using tunneling magnetoresistance (TMR) sensors and a measurement scheme is presented to enable the primary pad to automatically detect and identify the secondary pad in an electric vehicle (EV). In wirelessly charged EVs, a primary pad that can interoperate with different types of secondary pads is highly beneficial. A bipolar pad (BPP) primary can be configured to transfer power to a circular pad (CP) or a double-D pad (DDP) secondary. In the proposed system, during the sensing phase, the primary pad is excited at a very low current (<200 mA) in a non-polarized mode at the resonance frequency, 43.8 kHz, of the primary. When a CP secondary is present above the primary, the frequency bifurcation effect due to the high coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>) is clearly observed. This reduces the primary current considerably. In addition, the magnitude of the primary magnetic field is modulated/changed due to the magnetic field of the secondary. When a DDP secondary is present above the primary, a slight yet repeatable change is seen in the primary magnetic field due to the modulation, while the frequency bifurcation is not seen as the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is very low. The simulation and experimental studies show that these features can be used to reliably detect and identify the type of secondary pad. In the prototype developed, TMR sensors are integrated at the optimal locations on the primary pad to sense the change in the magnetic flux density. In addition, the prototype pad and sensor system developed distinguishes between the metallic body and the secondary pad so that an accidental turning on of the primary pad can be avoided. The results, from the laboratory prototype built and tested in detail, validate the functionality and usefulness of the proposed scheme.]]></description><identifier>ISSN: 0018-9456</identifier><identifier>EISSN: 1557-9662</identifier><identifier>DOI: 10.1109/TIM.2021.3102680</identifier><identifier>CODEN: IEIMAO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Coils ; electric vehicle (EV) ; Electric vehicles ; Ferrites ; inductive power transfer (IPT) ; Low currents ; Magnetic resonance ; Magnetoresistance ; Magnetoresistivity ; measurement system ; Prototypes ; secondary pad identification ; Sensor systems ; Sensors ; Switches ; tunneling magnetoresistance (TMR) sensor</subject><ispartof>IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e9b3bd5fa0c3a0bb8169f1c3329e38fd00c8a332d100f8d906969140929576c13</citedby><cites>FETCH-LOGICAL-c291t-e9b3bd5fa0c3a0bb8169f1c3329e38fd00c8a332d100f8d906969140929576c13</cites><orcidid>0000-0001-9923-6328 ; 0000-0003-0334-889X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9507464$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,4024,27923,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9507464$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vaheeda, Jeshma Thalapil</creatorcontrib><creatorcontrib>George, Boby</creatorcontrib><title>A Smart Primary Pad With Integrated TMR Sensors for Wirelessly Charged EVs</title><title>IEEE transactions on instrumentation and measurement</title><addtitle>TIM</addtitle><description><![CDATA[In this article, a simple and efficient sensing mechanism, using tunneling magnetoresistance (TMR) sensors and a measurement scheme is presented to enable the primary pad to automatically detect and identify the secondary pad in an electric vehicle (EV). In wirelessly charged EVs, a primary pad that can interoperate with different types of secondary pads is highly beneficial. A bipolar pad (BPP) primary can be configured to transfer power to a circular pad (CP) or a double-D pad (DDP) secondary. In the proposed system, during the sensing phase, the primary pad is excited at a very low current (<200 mA) in a non-polarized mode at the resonance frequency, 43.8 kHz, of the primary. When a CP secondary is present above the primary, the frequency bifurcation effect due to the high coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>) is clearly observed. This reduces the primary current considerably. In addition, the magnitude of the primary magnetic field is modulated/changed due to the magnetic field of the secondary. When a DDP secondary is present above the primary, a slight yet repeatable change is seen in the primary magnetic field due to the modulation, while the frequency bifurcation is not seen as the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is very low. The simulation and experimental studies show that these features can be used to reliably detect and identify the type of secondary pad. In the prototype developed, TMR sensors are integrated at the optimal locations on the primary pad to sense the change in the magnetic flux density. In addition, the prototype pad and sensor system developed distinguishes between the metallic body and the secondary pad so that an accidental turning on of the primary pad can be avoided. The results, from the laboratory prototype built and tested in detail, validate the functionality and usefulness of the proposed scheme.]]></description><subject>Automation</subject><subject>Coils</subject><subject>electric vehicle (EV)</subject><subject>Electric vehicles</subject><subject>Ferrites</subject><subject>inductive power transfer (IPT)</subject><subject>Low currents</subject><subject>Magnetic resonance</subject><subject>Magnetoresistance</subject><subject>Magnetoresistivity</subject><subject>measurement system</subject><subject>Prototypes</subject><subject>secondary pad identification</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Switches</subject><subject>tunneling magnetoresistance (TMR) sensor</subject><issn>0018-9456</issn><issn>1557-9662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvA89aZZJPdHMtStdJisVWPIbub9IParcn20H9vyhZPwzDPO8M8hNwjDBBBPS3G0wEDhgOOwGQOF6SHQmSJkpJdkh4A5olKhbwmNyFsACCTadYjb0M6_zG-pTO_jvVIZ6am3-t2Rce71i69aW1NF9MPOre70PhAXePj3NutDWF7pMXK-GVERl_hllw5sw327lz75PN5tChek8n7y7gYTpKKKWwTq0pe1sIZqLiBssxRKocV50xZnrsaoMpN7GoEcHmtQCqpMAXFlMhkhbxPHru9e9_8Hmxo9aY5-F08qZmQkZNCnCjoqMo3IXjr9L77UCPokzEdjemTMX02FiMPXWRtrf3HlYAslSn_A9MSZLM</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Vaheeda, Jeshma Thalapil</creator><creator>George, Boby</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9923-6328</orcidid><orcidid>https://orcid.org/0000-0003-0334-889X</orcidid></search><sort><creationdate>2021</creationdate><title>A Smart Primary Pad With Integrated TMR Sensors for Wirelessly Charged EVs</title><author>Vaheeda, Jeshma Thalapil ; George, Boby</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e9b3bd5fa0c3a0bb8169f1c3329e38fd00c8a332d100f8d906969140929576c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Automation</topic><topic>Coils</topic><topic>electric vehicle (EV)</topic><topic>Electric vehicles</topic><topic>Ferrites</topic><topic>inductive power transfer (IPT)</topic><topic>Low currents</topic><topic>Magnetic resonance</topic><topic>Magnetoresistance</topic><topic>Magnetoresistivity</topic><topic>measurement system</topic><topic>Prototypes</topic><topic>secondary pad identification</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Switches</topic><topic>tunneling magnetoresistance (TMR) sensor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vaheeda, Jeshma Thalapil</creatorcontrib><creatorcontrib>George, Boby</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on instrumentation and measurement</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vaheeda, Jeshma Thalapil</au><au>George, Boby</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Smart Primary Pad With Integrated TMR Sensors for Wirelessly Charged EVs</atitle><jtitle>IEEE transactions on instrumentation and measurement</jtitle><stitle>TIM</stitle><date>2021</date><risdate>2021</risdate><volume>70</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0018-9456</issn><eissn>1557-9662</eissn><coden>IEIMAO</coden><abstract><![CDATA[In this article, a simple and efficient sensing mechanism, using tunneling magnetoresistance (TMR) sensors and a measurement scheme is presented to enable the primary pad to automatically detect and identify the secondary pad in an electric vehicle (EV). In wirelessly charged EVs, a primary pad that can interoperate with different types of secondary pads is highly beneficial. A bipolar pad (BPP) primary can be configured to transfer power to a circular pad (CP) or a double-D pad (DDP) secondary. In the proposed system, during the sensing phase, the primary pad is excited at a very low current (<200 mA) in a non-polarized mode at the resonance frequency, 43.8 kHz, of the primary. When a CP secondary is present above the primary, the frequency bifurcation effect due to the high coupling coefficient (<inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula>) is clearly observed. This reduces the primary current considerably. In addition, the magnitude of the primary magnetic field is modulated/changed due to the magnetic field of the secondary. When a DDP secondary is present above the primary, a slight yet repeatable change is seen in the primary magnetic field due to the modulation, while the frequency bifurcation is not seen as the <inline-formula> <tex-math notation="LaTeX">k </tex-math></inline-formula> is very low. The simulation and experimental studies show that these features can be used to reliably detect and identify the type of secondary pad. In the prototype developed, TMR sensors are integrated at the optimal locations on the primary pad to sense the change in the magnetic flux density. In addition, the prototype pad and sensor system developed distinguishes between the metallic body and the secondary pad so that an accidental turning on of the primary pad can be avoided. The results, from the laboratory prototype built and tested in detail, validate the functionality and usefulness of the proposed scheme.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIM.2021.3102680</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-9923-6328</orcidid><orcidid>https://orcid.org/0000-0003-0334-889X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9456
ispartof IEEE transactions on instrumentation and measurement, 2021, Vol.70, p.1-10
issn 0018-9456
1557-9662
language eng
recordid cdi_crossref_primary_10_1109_TIM_2021_3102680
source IEEE Electronic Library (IEL)
subjects Automation
Coils
electric vehicle (EV)
Electric vehicles
Ferrites
inductive power transfer (IPT)
Low currents
Magnetic resonance
Magnetoresistance
Magnetoresistivity
measurement system
Prototypes
secondary pad identification
Sensor systems
Sensors
Switches
tunneling magnetoresistance (TMR) sensor
title A Smart Primary Pad With Integrated TMR Sensors for Wirelessly Charged EVs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A10%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Smart%20Primary%20Pad%20With%20Integrated%20TMR%20Sensors%20for%20Wirelessly%20Charged%20EVs&rft.jtitle=IEEE%20transactions%20on%20instrumentation%20and%20measurement&rft.au=Vaheeda,%20Jeshma%20Thalapil&rft.date=2021&rft.volume=70&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0018-9456&rft.eissn=1557-9662&rft.coden=IEIMAO&rft_id=info:doi/10.1109/TIM.2021.3102680&rft_dat=%3Cproquest_RIE%3E2560926551%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560926551&rft_id=info:pmid/&rft_ieee_id=9507464&rfr_iscdi=true