Secure and Latency-Aware Digital Twin Assisted Resource Scheduling for 5G Edge Computing-Empowered Distribution Grids
Digital twin (DT) provides accurate guidance for multidimensional resource scheduling in 5G edge computing-empowered distribution grids by establishing a digital representation of the physical entities. In this article, we address the critical challenges of DT construction and DT-assisted resource s...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-07, Vol.18 (7), p.4933-4943 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Digital twin (DT) provides accurate guidance for multidimensional resource scheduling in 5G edge computing-empowered distribution grids by establishing a digital representation of the physical entities. In this article, we address the critical challenges of DT construction and DT-assisted resource scheduling such as low accuracy, large iteration delay, and security threats. We propose a federated learning-based DT framework and present a Secure and lAtency-aware dIgital twin assisted resource scheduliNg algoriThm (SAINT). SAINT achieves low-latency, accurate, and secure DT by jointly optimizing its total iteration delay and loss function, and leveraging abnormal model recognition (AMR). SAINT enables intelligent resource scheduling by using DT to improve the learning performance of deep Q-learning. SAINT supports access priority and energy consumption awareness due to the consideration of long-term constraints. Compared with state-of-the-art algorithms, SAINT has superior performance in cumulative iteration delay, DT loss function, energy consumption, and access priority deficit. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2021.3137349 |