Design and Analysis of a Hybrid GNN-ZNN Model With a Fuzzy Adaptive Factor for Matrix Inversion
Motivated from the convergence capability achieved by gradient neural network (GNN) and zeroing neural network (ZNN) for matrix inversion, in this article, a novel hybrid GNN-ZNN (H-GNN-ZNN) model is proposed by introducing a fuzzy adaptive control strategy to generate a fuzzy adaptive factor that c...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2022-04, Vol.18 (4), p.2434-2442 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivated from the convergence capability achieved by gradient neural network (GNN) and zeroing neural network (ZNN) for matrix inversion, in this article, a novel hybrid GNN-ZNN (H-GNN-ZNN) model is proposed by introducing a fuzzy adaptive control strategy to generate a fuzzy adaptive factor that can change its size adaptively according to the residual error. Due to its fuzzy adaptability, this novel model is called the fuzzy adaptive GNN-ZNN (FA-GNN-ZNN) model for presentation convenience. We prove that the FA-GNN-ZNN model has the better performance than the existing H-GNN-ZNN model under the same conditions. In addition, different activation functions are applied to the FA-GNN-ZNN model to improve its performance further, and the corresponding theoretical analysis is given. Finally, comparative simulation results demonstrate the validity and superiority of the FA-GNN-ZNN model for matrix inversion. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2021.3093115 |