A Graph Neural Network-Based Digital Twin for Network Slicing Management

Network slicing has emerged as a promising networking paradigm to provide resources tailored for Industry 4.0 and diverse services in 5G networks. However, the increased network complexity poses a huge challenge in network management due to virtualized infrastructure and stringent quality-of-service...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial informatics 2022-02, Vol.18 (2), p.1367-1376
Hauptverfasser: Wang, Haozhe, Wu, Yulei, Min, Geyong, Miao, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Network slicing has emerged as a promising networking paradigm to provide resources tailored for Industry 4.0 and diverse services in 5G networks. However, the increased network complexity poses a huge challenge in network management due to virtualized infrastructure and stringent quality-of-service requirements. Digital twin (DT) technology paves a way for achieving cost-efficient and performance-optimal management, through creating a virtual representation of slicing-enabled networks digitally to simulate its behaviors and predict the time-varying performance. In this article, a scalable DT of network slicing is developed, aiming to capture the intertwined relationships among slices and monitor the end-to-end (E2E) metrics of slices under diverse network environments. The proposed DT exploits the novel graph neural network model that can learn insights directly from slicing-enabled networks represented by non-Euclidean graph structures. Experimental results show that the DT can accurately mirror the network behaviour and predict E2E latency under various topologies and unseen environments.
ISSN:1551-3203
1941-0050
DOI:10.1109/TII.2020.3047843