Service Popularity-Based Smart Resources Partitioning for Fog Computing-Enabled Industrial Internet of Things
Recently, fog computing has gained increasing attention in processing the computing tasks of the industrial Internet of things (IIoT) with different service popularity. In task-diversified fog computing-enabled IIoT (F-IIoT), the mismatch between expected computing efficiency and partitioned resourc...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2018-10, Vol.14 (10), p.4702-4711 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, fog computing has gained increasing attention in processing the computing tasks of the industrial Internet of things (IIoT) with different service popularity. In task-diversified fog computing-enabled IIoT (F-IIoT), the mismatch between expected computing efficiency and partitioned resources on fog nodes (FNs) may pose serious traffic congestion even large-scale industrial service interruptions. The existing works mainly studied offloading which type of computing tasks into FNs, but few studies enabled smart resource partitioning of FNs. In this paper, a service popularity-based smart resources partitioning (SPSRP) scheme is proposed for fog computing-enabled IIoT. We first exploit Zipf's law to model the relationship between popularity ranks and computing costs of IIoT services. Moreover, we propose an implementation architecture of the SPSRP scheme for F-IIoT, which decouples the computing control layer from data processing layer of IIoT through a specified SPSRP controller. Besides, a mobility and heterogeneity-aware partitioning algorithm is presented for extending SPSRP scheme to seamlessly support cross-domain resources partitioning. The simulations demonstrate that the SPSRP scheme can bring notable performance improvements on delay time, successful response rate and fault tolerance for fog computing to deal with the large-scale IIoT services. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2018.2845844 |