Advanced Features and Industrial Applications of FPGAs-A Review
Field programmable gate arrays (FPGAs) have established themselves as one of the preferred digital implementation platforms in a plethora of current industrial applications, and extensions and improvements are still continuously being included in the devices. This paper reviews recent advancements i...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial informatics 2015-08, Vol.11 (4), p.853-864 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Field programmable gate arrays (FPGAs) have established themselves as one of the preferred digital implementation platforms in a plethora of current industrial applications, and extensions and improvements are still continuously being included in the devices. This paper reviews recent advancements in FPGA technology, emphasizing the novel features that may significantly contribute to the development of more efficient digital systems for industrial applications. Special attention is paid to the design paradigm shift caused by the availability of increasingly powerful embedded (and soft) processors, which transformed FPGAs from hardware accelerators to very powerful system-on-chip (SoC) platforms. New analog resources, floating-point operators, and hard memory controllers are also described, because of the great advantages they provide to designers. Software tools are being strongly influenced by the design paradigm shift, which requires from them a much better support for software developers. Focusing mainly on this issue, recent advancements in software resources [intellectual property (IP) cores and design tools] are also reviewed. The impact of new FPGA features in industrial applications is analyzed in detail in three main areas, namely digital real-time simulation, advanced control techniques, and electronic instrumentation, with focus on mechatronics, robotics, and power systems design. The way digital systems are being currently designed in these areas is comprehensively reviewed, and a critical analysis of how they could significantly benefit from new FPGA features is presented. |
---|---|
ISSN: | 1551-3203 1941-0050 |
DOI: | 10.1109/TII.2015.2431223 |