Abandoned Object Detection via Temporal Consistency Modeling and Back-Tracing Verification for Visual Surveillance
This paper presents an effective approach for detecting abandoned luggage in surveillance videos. We combine short- and long-term background models to extract foreground objects, where each pixel in an input image is classified as a 2-bit code. Subsequently, we introduce a framework to identify stat...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information forensics and security 2015-07, Vol.10 (7), p.1359-1370 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an effective approach for detecting abandoned luggage in surveillance videos. We combine short- and long-term background models to extract foreground objects, where each pixel in an input image is classified as a 2-bit code. Subsequently, we introduce a framework to identify static foreground regions based on the temporal transition of code patterns, and to determine whether the candidate regions contain abandoned objects by analyzing the back-traced trajectories of luggage owners. The experimental results obtained based on video images from 2006 Performance Evaluation of Tracking and Surveillance and 2007 Advanced Video and Signal-based Surveillance databases show that the proposed approach is effective for detecting abandoned luggage, and that it outperforms previous methods. |
---|---|
ISSN: | 1556-6013 1556-6021 |
DOI: | 10.1109/TIFS.2015.2408263 |