Scanner Identification Using Feature-Based Processing and Analysis

Digital images can be obtained through a variety of sources including digital cameras and scanners. In many cases, the ability to determine the source of a digital image is important. This paper presents methods for authenticating images that have been acquired using flatbed desktop scanners. These...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information forensics and security 2009-03, Vol.4 (1), p.123-139
Hauptverfasser: Khanna, N., Mikkilineni, A.K., Delp, E.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Digital images can be obtained through a variety of sources including digital cameras and scanners. In many cases, the ability to determine the source of a digital image is important. This paper presents methods for authenticating images that have been acquired using flatbed desktop scanners. These methods use scanner fingerprints based on statistics of imaging sensor pattern noise. To capture different types of sensor noise, a denoising filterbank consisting four different denoising filters is used for obtaining the noise patterns. To identify the source scanner, a support vector machine classifier based on these fingerprints is used. These features are shown to achieve high classification accuracy. Furthermore, the selected fingerprints based on statistical properties of the sensor noise are shown to be robust under postprocessing operations, such as JPEG compression, contrast stretching, and sharpening.
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2008.2009604