Instantaneous Torque Modeling and Torque Ripple Reduction Strategy for Flux Modulated Doubly-Salient Reluctance Motor Drives

In this article, a novel instantaneous electromagnetic torque modeling technique and current component distribution strategy are proposed for torque ripple reduction in three-phase flux modulated doubly-salient reluctance motor (FMDRM) drives. First, the analytical model of the instantaneous electro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2022-10, Vol.69 (10), p.9838-9848
Hauptverfasser: Yu, Zhiyue, Gan, Chun, Ni, Kai, Chen, Yu, Qu, Ronghai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, a novel instantaneous electromagnetic torque modeling technique and current component distribution strategy are proposed for torque ripple reduction in three-phase flux modulated doubly-salient reluctance motor (FMDRM) drives. First, the analytical model of the instantaneous electromagnetic torque of a three-phase FMDRM is established, where the contributions of current components and harmonic inductance components are considered. The generation mechanisms of the average torque and torque ripple components are investigated in detail. Furthermore, based on the analytical instantaneous electromagnetic torque model, a simplified current component distribution strategy is proposed to further reduce the torque ripple of the FMDRM. Taking the torque ripple minimization as the optimization objective, the current advanced angle is optimized and the corresponding current component distribution strategy is carried out to reduce the torque ripple. The magnetic circuit saturation effect is also taken into account. Compared to the conventional scheme, the control freedom degree of the three-dimensional current controller in the FMDRM drive is fully utilized and the torque ripple of the FMDRM can be significantly reduced without the sacrifice of output torque capability and system efficiency. Experimental results are carried out on a three-phase 12/8 FMDRM prototype to verify the effectiveness of the proposed control strategy.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2021.3139174