Intelligent Critic Control With Disturbance Attenuation for Affine Dynamics Including an Application to a Microgrid System

In this paper, a computationally efficient framework for intelligent critic control design and application of continuous-time input-affine systems is established with the purpose of disturbance attenuation. The described problem is formulated as a two-player zero-sum differential game and the adapti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2017-06, Vol.64 (6), p.4935-4944
Hauptverfasser: Wang, Ding, He, Haibo, Mu, Chaoxu, Liu, Derong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a computationally efficient framework for intelligent critic control design and application of continuous-time input-affine systems is established with the purpose of disturbance attenuation. The described problem is formulated as a two-player zero-sum differential game and the adaptive critic mechanism with intelligent component is employed to solve the minimax optimization problem. First, a neural identifier is developed to reconstruct the unknown dynamical information incorporating stability analysis. Next, the optimal control law and the worst-case disturbance law are designed by introducing and tuning a critic neural network. Moreover, the closed-loop system is proved to possess the uniform ultimate boundedness. At last, the present method is applied to a smart microgrid and then is further adopted to control a general nonlinear system via simulation, thereby substantiating the performance of disturbance attenuation.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2017.2674633