Robust and Computationally Lightweight Autonomous Tracking of Vehicle Taillights and Signal Detection by Embedded Smart Cameras

An important aspect of collision avoidance and driver assistance systems, as well as autonomous vehicles, is the tracking of vehicle taillights and the detection of alert signals (turns and brakes). In this paper, we present the design and implementation of a robust and computationally lightweight a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industrial electronics (1982) 2015-06, Vol.62 (6), p.3732-3741
Hauptverfasser: Almagambetov, Akhan, Velipasalar, Senem, Casares, Mauricio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An important aspect of collision avoidance and driver assistance systems, as well as autonomous vehicles, is the tracking of vehicle taillights and the detection of alert signals (turns and brakes). In this paper, we present the design and implementation of a robust and computationally lightweight algorithm for a real-time vision system, capable of detecting and tracking vehicle taillights, recognizing common alert signals using a vehicle-mounted embedded smart camera, and counting the cars passing on both sides of the vehicle. The system is low-power and processes scenes entirely on the microprocessor of an embedded smart camera. In contrast to most existing work that addresses either daytime or nighttime detection, the presented system provides the ability to track vehicle taillights and detect alert signals regardless of lighting conditions. The mobile vision system has been tested in actual traffic scenes and the results obtained demonstrate the performance and the lightweight nature of the algorithm.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2015.2400420