Impacts of Deployment Strategies on Localization Performance in Underwater Acoustic Sensor Networks
When setting up an underwater acoustic sensor network (UASN), node deployment is the first and foremost task, upon which many fundamental network services, such as network topology control, routing, and boundary detection, will be built. While node deployment in 2-D terrestrial wireless sensor netwo...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2015-03, Vol.62 (3), p.1725-1733 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | When setting up an underwater acoustic sensor network (UASN), node deployment is the first and foremost task, upon which many fundamental network services, such as network topology control, routing, and boundary detection, will be built. While node deployment in 2-D terrestrial wireless sensor networks has been extensively studied, little attention has been received by their 3-D counterparts. This paper aims at analyzing the impacts of node deployment strategies on localization performances in a 3-D environment. More specifically, the simulations conducted in this paper reveal that the regular tetrahedron deployment scheme outperforms the random deployment scheme and the cube deployment scheme in terms of reducing localization error and increasing localization ratio while maintaining the average number of neighboring anchor nodes and network connectivity. Given the fact that random deployment is the primary choice for most of practical applications to date, our results are expected to shed some light on the design of UASNs in the near future. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2014.2362731 |