Modeling and DBC-PSC-PWM Control of a Three-Phase Flying-Capacitor Stacked Multilevel Voltage Source Inverter
In this paper, the authors propose a mathematical model for a new topology called "stacked multicell converter" (SMC). Each phase of the SMC n × m multilevel inverter is formed by a stack of m flying-capacitor multilevel inverters, and each stack or stage is realized by connecting in serie...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2010-07, Vol.57 (7), p.2231-2239 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, the authors propose a mathematical model for a new topology called "stacked multicell converter" (SMC). Each phase of the SMC n × m multilevel inverter is formed by a stack of m flying-capacitor multilevel inverters, and each stack or stage is realized by connecting in series n controllable commutation cells. An original multicarrier subharmonic pulsewidth modulation (PWM), called disposition band carrier and phase-shifted carrier PWM (DBC-PSC-PWM), method is developed to produce (n × m + 1) output voltage levels and to improve the output voltage harmonic spectrum with a wide output frequency range. A diagram state machine is then used to decode the DBC-PSC-PWM modulator and distribute the commutations evenly to each inverter cell in a cyclical fashion. To carry out, in practice, the SMC n × m modulation technique, the implementation of the modulation control strategy has been done in a field-programmable gate array circuit XC4010E+ of XILINX to control a three-phase SMC 3 × 2 seven-level inverter, and the experimental results are carried out to confirm the high performance of this inverter. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2009.2030764 |