Analysis and Design of Maximum Power Point Tracking Scheme for Thermoelectric Battery Energy Storage System
The analysis and design of an adaptive maximum power point tracking (MPPT) scheme using incremental impedance are presented. A small-signal model is mathematically derived, and the impact of two major design parameters, which are scaling factor and sampling interval, is analyzed in the frequency dom...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industrial electronics (1982) 2009-09, Vol.56 (9), p.3709-3716 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The analysis and design of an adaptive maximum power point tracking (MPPT) scheme using incremental impedance are presented. A small-signal model is mathematically derived, and the impact of two major design parameters, which are scaling factor and sampling interval, is analyzed in the frequency domain. Four factors which specifically affect the MPPT response are also clearly addressed. Based on this analysis, a design methodology to achieve a desirable transient response, while retaining system stability, is developed. The design methodology is implemented and verified with hardware experiments on a thermoelectric generator battery energy storage system, which indicate agreement between dynamic response and target bandwidth. |
---|---|
ISSN: | 0278-0046 1557-9948 |
DOI: | 10.1109/TIE.2009.2025717 |