A Detailed Analysis and Guidelines for the Induction Motor Flux-Decay Test

Ac motor drives are becoming increasingly popular in the field of industrial processes and transportation electrification. Currently, many industrial applications are based on induction machines supplied by inverters and controlled with field-oriented control techniques. Such techniques require the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2024-01, Vol.60 (1), p.1-9
Hauptverfasser: Armando, Eric, Boglietti, Aldo, Mandrile, Fabio, Carpaneto, Enrico, Rubino, Sandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ac motor drives are becoming increasingly popular in the field of industrial processes and transportation electrification. Currently, many industrial applications are based on induction machines supplied by inverters and controlled with field-oriented control techniques. Such techniques require the knowledge of the machine parameters to ensure the correctness of the torque control both in dynamic and steady-state conditions. In particular, an accurate determination of the induction motor rotor time constant is crucial. Therefore, this paper analyses in detail the physical phenomena involved during the flux-decay test used for the rotor time constant determination. The reported analysis has been performed on a 15 kW induction motor. The transient of the machine's back-electromotive force (back-emf) has been critically analyzed during its evolution, finding a link between its evolution in time and the magnetic phenomena that occur both in the stator and the rotor. In particular, the effects due to the lamination saturation, the stator and rotor leakage inductances, and the stator iron losses have been associated with the transient evolution of the machine's back-emf.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2023.3297983