Modeling of Bearing Voltage in Electric Machines Based on Electromagnetic FEA and Measured Bearing Capacitance

Bearing voltages and associated bearing currents in electric machines driven by pulsewidth modulation converters with high switching frequencies and high dv/dt can cause premature bearing failures. This article proposes a new modeling approach for the prediction of steady-state and transient bearing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2021-09, Vol.57 (5), p.4765-4775
Hauptverfasser: Han, Peng, Heins, Greg, Patterson, Dean, Thiele, Mark, Ionel, Dan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bearing voltages and associated bearing currents in electric machines driven by pulsewidth modulation converters with high switching frequencies and high dv/dt can cause premature bearing failures. This article proposes a new modeling approach for the prediction of steady-state and transient bearing voltages based on two-dimensional (2-D) electromagnetic finite element analysis with coupled external circuits using measured bearing capacitance values. The distributed-element external circuit was employed mainly to take into account the influence of wire distribution and frequency dependency, which are typically neglected by traditional equivalent circuits. The developed model was then used to simulate bearing voltages for various scenarios and evaluate the effectiveness of several easy-to-implement bearing voltage reduction methods from the perspective of machine design and manufacturing, such as using the insulated shaft and/or bearings, introducing additional insulation in the rotor, and changing the material of machine components. Experimental measurements are also provided to facilitate the analysis and validate the proposed approach.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2021.3092700