A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing
Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and relia...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2018-01, Vol.54 (1), p.469-481 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 1 |
container_start_page | 469 |
container_title | IEEE transactions on industry applications |
container_volume | 54 |
creator | Dong, Dong Agamy, Mohammed S. Harfman-Todorovic, Maja Liu, Xiaohu Garces, Luis Zhou, Rui Cioffi, Philip |
description | Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and reliability in more distributed generation smart-grid systems. A commercial ready PV microinverter not only focuses on efficiency and cost, but also on reliability, manufacturability, compliance of various grid-code, and electromagnetic interference regulations. This paper presents a detailed design and development process of a microinverter system from concept all the way to final commercial-ready prototype. Various design tradeoffs such as topology, control, filter solutions and power supplies, and mechanical packaging are provided. The required prototype testing and final system field tests are also presented. The presented design and test process intends to accelerate the future microinverter system design and development toward a commercial ready product. |
doi_str_mv | 10.1109/TIA.2017.2752680 |
format | Article |
fullrecord | <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_crossref_primary_10_1109_TIA_2017_2752680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8038016</ieee_id><sourcerecordid>10_1109_TIA_2017_2752680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c332t-625d495215b6f6debce34ad7795d70e106812ce29b77e63251b748d0d3659c763</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKt3wUvw3K352CQbb6XaWqgoWvUYdpNpG2mzy24q-O9NafE0MPM-M8yD0DUlQ0qJvlvMRkNGqBoyJZgsyAnqUc11prlUp6hHiOaZ1jo_Rxdd900IzQXNe8iN8OsnfoPOOwjRlxv87G1b-_ADbYQWf_m4xtPWu-x91zR1G_FkF2z0dbjHD4lahQGebZsNbBNe7vsDXAaHJx42Di-giz6sLtHZstx0cHWsffQxeVyMn7L5y3Q2Hs0zyzmLmWTC5VowKiq5lA4qCzwvnVJaOEWAEllQZoHpSimQnAlaqbxwxHEptFWS99HtYW-dzprO-gh2besQwEZDRU4FESlEDqH0Zte1sDRN67dl-2soMXuVJqk0e5XmqDIhNwfEA8B_PA0KQiX_A75HbrE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing</title><source>IEEE Electronic Library (IEL)</source><creator>Dong, Dong ; Agamy, Mohammed S. ; Harfman-Todorovic, Maja ; Liu, Xiaohu ; Garces, Luis ; Zhou, Rui ; Cioffi, Philip</creator><creatorcontrib>Dong, Dong ; Agamy, Mohammed S. ; Harfman-Todorovic, Maja ; Liu, Xiaohu ; Garces, Luis ; Zhou, Rui ; Cioffi, Philip ; General Electric Company, Boston, MA (United States)</creatorcontrib><description>Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and reliability in more distributed generation smart-grid systems. A commercial ready PV microinverter not only focuses on efficiency and cost, but also on reliability, manufacturability, compliance of various grid-code, and electromagnetic interference regulations. This paper presents a detailed design and development process of a microinverter system from concept all the way to final commercial-ready prototype. Various design tradeoffs such as topology, control, filter solutions and power supplies, and mechanical packaging are provided. The required prototype testing and final system field tests are also presented. The presented design and test process intends to accelerate the future microinverter system design and development toward a commercial ready product.</description><identifier>ISSN: 0093-9994</identifier><identifier>EISSN: 1939-9367</identifier><identifier>DOI: 10.1109/TIA.2017.2752680</identifier><identifier>CODEN: ITIACR</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Capacitors ; Engineering ; Grid-support functions ; Integrated circuit reliability ; Inverters ; microinverter ; Power harmonic filters ; Prototypes ; renewable energy ; Topology</subject><ispartof>IEEE transactions on industry applications, 2018-01, Vol.54 (1), p.469-481</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c332t-625d495215b6f6debce34ad7795d70e106812ce29b77e63251b748d0d3659c763</citedby><cites>FETCH-LOGICAL-c332t-625d495215b6f6debce34ad7795d70e106812ce29b77e63251b748d0d3659c763</cites><orcidid>0000-0002-7236-3439 ; 0000000272363439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8038016$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8038016$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/1541505$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Dong, Dong</creatorcontrib><creatorcontrib>Agamy, Mohammed S.</creatorcontrib><creatorcontrib>Harfman-Todorovic, Maja</creatorcontrib><creatorcontrib>Liu, Xiaohu</creatorcontrib><creatorcontrib>Garces, Luis</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Cioffi, Philip</creatorcontrib><creatorcontrib>General Electric Company, Boston, MA (United States)</creatorcontrib><title>A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing</title><title>IEEE transactions on industry applications</title><addtitle>TIA</addtitle><description>Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and reliability in more distributed generation smart-grid systems. A commercial ready PV microinverter not only focuses on efficiency and cost, but also on reliability, manufacturability, compliance of various grid-code, and electromagnetic interference regulations. This paper presents a detailed design and development process of a microinverter system from concept all the way to final commercial-ready prototype. Various design tradeoffs such as topology, control, filter solutions and power supplies, and mechanical packaging are provided. The required prototype testing and final system field tests are also presented. The presented design and test process intends to accelerate the future microinverter system design and development toward a commercial ready product.</description><subject>Capacitors</subject><subject>Engineering</subject><subject>Grid-support functions</subject><subject>Integrated circuit reliability</subject><subject>Inverters</subject><subject>microinverter</subject><subject>Power harmonic filters</subject><subject>Prototypes</subject><subject>renewable energy</subject><subject>Topology</subject><issn>0093-9994</issn><issn>1939-9367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKt3wUvw3K352CQbb6XaWqgoWvUYdpNpG2mzy24q-O9NafE0MPM-M8yD0DUlQ0qJvlvMRkNGqBoyJZgsyAnqUc11prlUp6hHiOaZ1jo_Rxdd900IzQXNe8iN8OsnfoPOOwjRlxv87G1b-_ADbYQWf_m4xtPWu-x91zR1G_FkF2z0dbjHD4lahQGebZsNbBNe7vsDXAaHJx42Di-giz6sLtHZstx0cHWsffQxeVyMn7L5y3Q2Hs0zyzmLmWTC5VowKiq5lA4qCzwvnVJaOEWAEllQZoHpSimQnAlaqbxwxHEptFWS99HtYW-dzprO-gh2besQwEZDRU4FESlEDqH0Zte1sDRN67dl-2soMXuVJqk0e5XmqDIhNwfEA8B_PA0KQiX_A75HbrE</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Dong, Dong</creator><creator>Agamy, Mohammed S.</creator><creator>Harfman-Todorovic, Maja</creator><creator>Liu, Xiaohu</creator><creator>Garces, Luis</creator><creator>Zhou, Rui</creator><creator>Cioffi, Philip</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-7236-3439</orcidid><orcidid>https://orcid.org/0000000272363439</orcidid></search><sort><creationdate>201801</creationdate><title>A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing</title><author>Dong, Dong ; Agamy, Mohammed S. ; Harfman-Todorovic, Maja ; Liu, Xiaohu ; Garces, Luis ; Zhou, Rui ; Cioffi, Philip</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c332t-625d495215b6f6debce34ad7795d70e106812ce29b77e63251b748d0d3659c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Capacitors</topic><topic>Engineering</topic><topic>Grid-support functions</topic><topic>Integrated circuit reliability</topic><topic>Inverters</topic><topic>microinverter</topic><topic>Power harmonic filters</topic><topic>Prototypes</topic><topic>renewable energy</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Dong</creatorcontrib><creatorcontrib>Agamy, Mohammed S.</creatorcontrib><creatorcontrib>Harfman-Todorovic, Maja</creatorcontrib><creatorcontrib>Liu, Xiaohu</creatorcontrib><creatorcontrib>Garces, Luis</creatorcontrib><creatorcontrib>Zhou, Rui</creatorcontrib><creatorcontrib>Cioffi, Philip</creatorcontrib><creatorcontrib>General Electric Company, Boston, MA (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>IEEE transactions on industry applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong, Dong</au><au>Agamy, Mohammed S.</au><au>Harfman-Todorovic, Maja</au><au>Liu, Xiaohu</au><au>Garces, Luis</au><au>Zhou, Rui</au><au>Cioffi, Philip</au><aucorp>General Electric Company, Boston, MA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing</atitle><jtitle>IEEE transactions on industry applications</jtitle><stitle>TIA</stitle><date>2018-01</date><risdate>2018</risdate><volume>54</volume><issue>1</issue><spage>469</spage><epage>481</epage><pages>469-481</pages><issn>0093-9994</issn><eissn>1939-9367</eissn><coden>ITIACR</coden><abstract>Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and reliability in more distributed generation smart-grid systems. A commercial ready PV microinverter not only focuses on efficiency and cost, but also on reliability, manufacturability, compliance of various grid-code, and electromagnetic interference regulations. This paper presents a detailed design and development process of a microinverter system from concept all the way to final commercial-ready prototype. Various design tradeoffs such as topology, control, filter solutions and power supplies, and mechanical packaging are provided. The required prototype testing and final system field tests are also presented. The presented design and test process intends to accelerate the future microinverter system design and development toward a commercial ready product.</abstract><cop>United States</cop><pub>IEEE</pub><doi>10.1109/TIA.2017.2752680</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7236-3439</orcidid><orcidid>https://orcid.org/0000000272363439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0093-9994 |
ispartof | IEEE transactions on industry applications, 2018-01, Vol.54 (1), p.469-481 |
issn | 0093-9994 1939-9367 |
language | eng |
recordid | cdi_crossref_primary_10_1109_TIA_2017_2752680 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitors Engineering Grid-support functions Integrated circuit reliability Inverters microinverter Power harmonic filters Prototypes renewable energy Topology |
title | A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T12%3A13%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20PV%20Residential%20Microinverter%20With%20Grid-Support%20Function:%20Design,%20Implementation,%20and%20Field%20Testing&rft.jtitle=IEEE%20transactions%20on%20industry%20applications&rft.au=Dong,%20Dong&rft.aucorp=General%20Electric%20Company,%20Boston,%20MA%20(United%20States)&rft.date=2018-01&rft.volume=54&rft.issue=1&rft.spage=469&rft.epage=481&rft.pages=469-481&rft.issn=0093-9994&rft.eissn=1939-9367&rft.coden=ITIACR&rft_id=info:doi/10.1109/TIA.2017.2752680&rft_dat=%3Ccrossref_RIE%3E10_1109_TIA_2017_2752680%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=8038016&rfr_iscdi=true |