A PV Residential Microinverter With Grid-Support Function: Design, Implementation, and Field Testing

Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and relia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on industry applications 2018-01, Vol.54 (1), p.469-481
Hauptverfasser: Dong, Dong, Agamy, Mohammed S., Harfman-Todorovic, Maja, Liu, Xiaohu, Garces, Luis, Zhou, Rui, Cioffi, Philip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Microinverter-based photovoltaic (PV) systems now represent about 8% of the U.S. residential market, and offer many advantages including safety, performance, and simplified installation. The next-generation of PV microinverter will include more ancillary functions to support grid stability and reliability in more distributed generation smart-grid systems. A commercial ready PV microinverter not only focuses on efficiency and cost, but also on reliability, manufacturability, compliance of various grid-code, and electromagnetic interference regulations. This paper presents a detailed design and development process of a microinverter system from concept all the way to final commercial-ready prototype. Various design tradeoffs such as topology, control, filter solutions and power supplies, and mechanical packaging are provided. The required prototype testing and final system field tests are also presented. The presented design and test process intends to accelerate the future microinverter system design and development toward a commercial ready product.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2017.2752680