Physics-Based PiN Diode SPICE Model for Power-Circuit Simulation
A physics-based model for PiN power diodes is developed and implemented as a SPICE subcircuit. The model is based on a distributed equivalent circuit representation of the PiN base region, which is obtained by solving the ambipolar diffusion equation with the finite difference method. The model is v...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on industry applications 2007-07, Vol.43 (4), p.911-919 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A physics-based model for PiN power diodes is developed and implemented as a SPICE subcircuit. The model is based on a distributed equivalent circuit representation of the PiN base region, which is obtained by solving the ambipolar diffusion equation with the finite difference method. The model is validated against experimental characterization that is carried out on the commercial fast recovery power diodes. Comparisons between the results of the SPICE model with experimental and simulation results taken from the literature and from SILVACO mixed-mode simulations are also presented. Finally, the simulation of a realistic power circuit demonstrates the practical suitability of the proposed model for circuit design in terms of computational efficiency, convergence, and robustness. |
---|---|
ISSN: | 0093-9994 1939-9367 |
DOI: | 10.1109/TIA.2007.900492 |